{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-209:features_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-270:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-231:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-250:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-234:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-270:training_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"-270:predict_ds","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-238:input_data","SourceOutputPortId":"-231:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"-231:features","SourceOutputPortId":"-209:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"-209:data"},{"DestinationInputPortId":"-250:options_data","SourceOutputPortId":"-227:data"},{"DestinationInputPortId":"-259:input_data","SourceOutputPortId":"-234:data"},{"DestinationInputPortId":"-227:input_2","SourceOutputPortId":"-259:data"},{"DestinationInputPortId":"-259:features","SourceOutputPortId":"-267:data"},{"DestinationInputPortId":"-227:input_1","SourceOutputPortId":"-270:predictions"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\n# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-231","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-231"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-231"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-231","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-250","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n from zipline.finance.slippage import SlippageModel\n class FixedPriceSlippage(SlippageModel):\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price = data.current(order.asset, price_field)\n else:\n price = order.limit\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 设置price_field在[low,high]就能保证只要限价单价格在此范围都能成交,也符合实际情形\n context.fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='close')\n context.set_slippage(us_equities=context.fix_slippage) # us是universe的简写","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n # 这里示意按照指定价格成交,可以根据需要加入止损的逻辑判断\n for instrument in instruments:\n try:\n myprice = ranker_prediction[ranker_prediction.instrument==instrument]['my_price'].values[0]\n context.order_target(context.symbol(instrument), 0, limit_price=myprice)\n except:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-250"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-250","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-209","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nmy_price=shift(open_0,-1)/shift(adjust_factor_0,-1)","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-209"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-209","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-227","ModuleId":"BigQuantSpace.data_join.data_join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-227"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-227"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-227","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":12,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-234","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"bar1d_wap_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-234"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-234"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-234","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-259","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-259"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-259"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-259","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":22,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-267","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nmy_price=shift(wap_1_twap_buy,-1)","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-267"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-267","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":23,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-270","ModuleId":"BigQuantSpace.stock_ranker.stock_ranker-v2","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"slim_data","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_model","NodeId":"-270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"predict_ds","NodeId":"-270"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-270","OutputType":null},{"Name":"predictions","NodeId":"-270","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='770,-95,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><NodePosition Node='-86' Position='902,539,200,200'/><NodePosition Node='-215' Position='381,188,200,200'/><NodePosition Node='-222' Position='385,280,200,200'/><NodePosition Node='-231' Position='1078,236,200,200'/><NodePosition Node='-238' Position='1102,323,200,200'/><NodePosition Node='-250' Position='1064,847,200,200'/><NodePosition Node='-209' Position='895,25,200,200'/><NodePosition Node='-227' Position='1106,752,200,200'/><NodePosition Node='-234' Position='1202,545,200,200'/><NodePosition Node='-259' Position='1299,638,200,200'/><NodePosition Node='-267' Position='1520,543,200,200'/><NodePosition Node='-270' Position='489,675,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":false}
[2020-07-21 16:06:11.133029] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-07-21 16:06:11.191119] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.192405] INFO: moduleinvoker: instruments.v2 运行完成[0.059372s].
[2020-07-21 16:06:11.194340] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2020-07-21 16:06:11.200550] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.201699] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.007342s].
[2020-07-21 16:06:11.203339] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-07-21 16:06:11.209091] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.210026] INFO: moduleinvoker: input_features.v1 运行完成[0.006689s].
[2020-07-21 16:06:11.217191] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-07-21 16:06:11.222929] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.223838] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.006647s].
[2020-07-21 16:06:11.225388] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-07-21 16:06:11.230413] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.231408] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.006018s].
[2020-07-21 16:06:11.232957] INFO: moduleinvoker: join.v3 开始运行..
[2020-07-21 16:06:11.393865] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.395021] INFO: moduleinvoker: join.v3 运行完成[0.162056s].
[2020-07-21 16:06:11.396826] INFO: moduleinvoker: dropnan.v1 开始运行..
[2020-07-21 16:06:11.401983] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.402840] INFO: moduleinvoker: dropnan.v1 运行完成[0.006015s].
[2020-07-21 16:06:11.404107] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-07-21 16:06:11.408745] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.409750] INFO: moduleinvoker: input_features.v1 运行完成[0.005641s].
[2020-07-21 16:06:11.411213] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-07-21 16:06:11.415541] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.416283] INFO: moduleinvoker: instruments.v2 运行完成[0.005068s].
[2020-07-21 16:06:11.421710] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-07-21 16:06:11.425768] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.426534] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.004825s].
[2020-07-21 16:06:11.427899] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-07-21 16:06:11.431662] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.432488] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.004588s].
[2020-07-21 16:06:11.433963] INFO: moduleinvoker: dropnan.v1 开始运行..
[2020-07-21 16:06:11.437698] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.438454] INFO: moduleinvoker: dropnan.v1 运行完成[0.004491s].
[2020-07-21 16:06:11.439831] INFO: moduleinvoker: stock_ranker.v2 开始运行..
[2020-07-21 16:06:11.448136] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.488669] INFO: moduleinvoker: stock_ranker.v2 运行完成[0.04882s].
[2020-07-21 16:06:11.490110] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2020-07-21 16:06:11.493982] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.494769] INFO: moduleinvoker: use_datasource.v1 运行完成[0.004659s].
[2020-07-21 16:06:11.495940] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-07-21 16:06:11.500741] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.501531] INFO: moduleinvoker: input_features.v1 运行完成[0.005588s].
[2020-07-21 16:06:11.502942] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-07-21 16:06:11.506892] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.507657] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.004714s].
[2020-07-21 16:06:11.509225] INFO: moduleinvoker: data_join.v3 开始运行..
[2020-07-21 16:06:11.513080] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.513877] INFO: moduleinvoker: data_join.v3 运行完成[0.004654s].
[2020-07-21 16:06:11.549811] INFO: moduleinvoker: backtest.v8 开始运行..
[2020-07-21 16:06:11.553105] INFO: backtest: biglearning backtest:V8.4.2
[2020-07-21 16:06:11.553919] INFO: backtest: product_type:stock by specified
[2020-07-21 16:06:11.652562] INFO: moduleinvoker: cached.v2 开始运行..
[2020-07-21 16:06:11.657127] INFO: moduleinvoker: 命中缓存
[2020-07-21 16:06:11.657985] INFO: moduleinvoker: cached.v2 运行完成[0.005434s].
[2020-07-21 16:06:12.789074] INFO: algo: TradingAlgorithm V1.6.8
[2020-07-21 16:06:14.391720] INFO: algo: trading transform...
[2020-07-21 16:06:17.149802] INFO: algo: handle_splits get splits [dt:2015-04-16 00:00:00+00:00] [asset:Equity(733 [002210.SZA]), ratio:0.6639604568481445]
[2020-07-21 16:06:17.150925] INFO: Position: position stock handle split[sid:733, orig_amount:2500, new_amount:3765.0, orig_cost:26.630001068115234, new_cost:17.6813, ratio:0.6639604568481445, last_sale_price:18.810001373291016]
[2020-07-21 16:06:17.151784] INFO: Position: after split: PositionStock(asset:Equity(733 [002210.SZA]), amount:3765.0, cost_basis:17.6813, last_sale_price:28.330001831054688)
[2020-07-21 16:06:17.152545] INFO: Position: returning cash: 5.351
[2020-07-21 16:06:17.547222] INFO: algo: handle_splits get splits [dt:2015-05-07 00:00:00+00:00] [asset:Equity(2951 [002427.SZA]), ratio:0.712041974067688]
[2020-07-21 16:06:17.548312] INFO: Position: position stock handle split[sid:2951, orig_amount:7500, new_amount:10533.0, orig_cost:17.017334747314454, new_cost:12.1171, ratio:0.712041974067688, last_sale_price:12.240001678466797]
[2020-07-21 16:06:17.549162] INFO: Position: after split: PositionStock(asset:Equity(2951 [002427.SZA]), amount:10533.0, cost_basis:12.1171, last_sale_price:17.190000534057617)
[2020-07-21 16:06:17.549892] INFO: Position: returning cash: 1.0638
[2020-07-21 16:06:17.595783] INFO: algo: handle_splits get splits [dt:2015-05-08 00:00:00+00:00] [asset:Equity(324 [300313.SZA]), ratio:0.4991074502468109]
[2020-07-21 16:06:17.596824] INFO: Position: position stock handle split[sid:324, orig_amount:4900, new_amount:9817.0, orig_cost:29.173059619202906, new_cost:14.5605, ratio:0.4991074502468109, last_sale_price:13.979998588562012]
[2020-07-21 16:06:17.597660] INFO: Position: after split: PositionStock(asset:Equity(324 [300313.SZA]), amount:9817.0, cost_basis:14.5605, last_sale_price:28.009998321533203)
[2020-07-21 16:06:17.598604] INFO: Position: returning cash: 7.3431
[2020-07-21 16:06:17.634551] INFO: algo: handle_splits get splits [dt:2015-05-11 00:00:00+00:00] [asset:Equity(1673 [002381.SZA]), ratio:0.6573165655136108]
[2020-07-21 16:06:17.635677] INFO: Position: position stock handle split[sid:1673, orig_amount:2900, new_amount:4411.0, orig_cost:21.760000228881836, new_cost:14.3032, ratio:0.6573165655136108, last_sale_price:14.059999465942383]
[2020-07-21 16:06:17.636572] INFO: Position: after split: PositionStock(asset:Equity(1673 [002381.SZA]), amount:4411.0, cost_basis:14.3032, last_sale_price:21.389997482299805)
[2020-07-21 16:06:17.637303] INFO: Position: returning cash: 12.3341
[2020-07-21 16:06:17.763240] INFO: algo: handle_splits get splits [dt:2015-05-15 00:00:00+00:00] [asset:Equity(2442 [000736.SZA]), ratio:0.9987077116966248]
[2020-07-21 16:06:17.764362] INFO: Position: position stock handle split[sid:2442, orig_amount:8400, new_amount:8410.0, orig_cost:15.350000381469727, new_cost:15.3302, ratio:0.9987077116966248, last_sale_price:15.459996223449707]
[2020-07-21 16:06:17.765217] INFO: Position: after split: PositionStock(asset:Equity(2442 [000736.SZA]), amount:8410.0, cost_basis:15.3302, last_sale_price:15.480000495910645)
[2020-07-21 16:06:17.765947] INFO: Position: returning cash: 13.4389
[2020-07-21 16:06:17.883209] INFO: algo: handle_splits get splits [dt:2015-05-22 00:00:00+00:00] [asset:Equity(3186 [300119.SZA]), ratio:0.9944382905960083]
[2020-07-21 16:06:17.884319] INFO: Position: position stock handle split[sid:3186, orig_amount:3900, new_amount:3921.0, orig_cost:16.622564462515022, new_cost:16.5301, ratio:0.9944382905960083, last_sale_price:17.880001068115234]
[2020-07-21 16:06:17.885180] INFO: Position: after split: PositionStock(asset:Equity(3186 [300119.SZA]), amount:3921.0, cost_basis:16.5301, last_sale_price:17.98000144958496)
[2020-07-21 16:06:17.885921] INFO: Position: returning cash: 14.5182
[2020-07-21 16:06:18.062928] INFO: algo: handle_splits get splits [dt:2015-06-01 00:00:00+00:00] [asset:Equity(2534 [002534.SZA]), ratio:0.9940923452377319]
[2020-07-21 16:06:18.064058] INFO: Position: position stock handle split[sid:2534, orig_amount:3800, new_amount:3822.0, orig_cost:27.410001754760742, new_cost:27.2481, ratio:0.9940923452377319, last_sale_price:25.240005493164062]
[2020-07-21 16:06:18.065007] INFO: Position: after split: PositionStock(asset:Equity(2534 [002534.SZA]), amount:3822.0, cost_basis:27.2481, last_sale_price:25.39000129699707)
[2020-07-21 16:06:18.065823] INFO: Position: returning cash: 14.7022
[2020-07-21 16:06:18.105963] INFO: algo: handle_splits get splits [dt:2015-06-02 00:00:00+00:00] [asset:Equity(1856 [300120.SZA]), ratio:0.9976426959037781]
[2020-07-21 16:06:18.107070] INFO: Position: position stock handle split[sid:1856, orig_amount:4600, new_amount:4610.0, orig_cost:19.440000534057617, new_cost:19.3942, ratio:0.9976426959037781, last_sale_price:21.160001754760742]
[2020-07-21 16:06:18.107933] INFO: Position: after split: PositionStock(asset:Equity(1856 [300120.SZA]), amount:4610.0, cost_basis:19.3942, last_sale_price:21.21000099182129)
[2020-07-21 16:06:18.108680] INFO: Position: returning cash: 18.3927
[2020-07-21 16:06:18.213878] INFO: algo: handle_splits get splits [dt:2015-06-05 00:00:00+00:00] [asset:Equity(3162 [002671.SZA]), ratio:0.9965330958366394]
[2020-07-21 16:06:18.215032] INFO: Position: position stock handle split[sid:3162, orig_amount:4500, new_amount:4515.0, orig_cost:15.899998664855957, new_cost:15.8449, ratio:0.9965330958366394, last_sale_price:20.120004653930664]
[2020-07-21 16:06:18.215919] INFO: Position: after split: PositionStock(asset:Equity(3162 [002671.SZA]), amount:4515.0, cost_basis:15.8449, last_sale_price:20.190000534057617)
[2020-07-21 16:06:18.216815] INFO: Position: returning cash: 13.1855
[2020-07-21 16:06:18.316019] INFO: algo: handle_splits get splits [dt:2015-06-10 00:00:00+00:00] [asset:Equity(273 [002714.SZA]), ratio:0.49969014525413513]
[2020-07-21 16:06:18.317154] INFO: Position: position stock handle split[sid:273, orig_amount:500, new_amount:1000.0, orig_cost:96.25, new_cost:48.0952, ratio:0.49969014525413513, last_sale_price:48.37000274658203]
[2020-07-21 16:06:18.318032] INFO: Position: after split: PositionStock(asset:Equity(273 [002714.SZA]), amount:1000.0, cost_basis:48.0952, last_sale_price:96.79999542236328)
[2020-07-21 16:06:18.318883] INFO: Position: returning cash: 29.9939
[2020-07-21 16:06:18.385824] INFO: algo: handle_splits get splits [dt:2015-06-12 00:00:00+00:00] [asset:Equity(993 [002053.SZA]), ratio:0.9975793361663818]
[2020-07-21 16:06:18.386988] INFO: Position: position stock handle split[sid:993, orig_amount:2400, new_amount:2405.0, orig_cost:36.019996643066406, new_cost:35.9328, ratio:0.9975793361663818, last_sale_price:41.21000289916992]
[2020-07-21 16:06:18.387912] INFO: Position: after split: PositionStock(asset:Equity(993 [002053.SZA]), amount:2405.0, cost_basis:35.9328, last_sale_price:41.310001373291016)
[2020-07-21 16:06:18.388735] INFO: Position: returning cash: 33.9443
[2020-07-21 16:06:18.603507] INFO: algo: handle_splits get splits [dt:2015-06-23 00:00:00+00:00] [asset:Equity(57 [300077.SZA]), ratio:0.9998031258583069]
[2020-07-21 16:06:18.604614] INFO: Position: position stock handle split[sid:57, orig_amount:600, new_amount:600.0, orig_cost:51.98999786376953, new_cost:51.9798, ratio:0.9998031258583069, last_sale_price:50.77000045776367]
[2020-07-21 16:06:18.605483] INFO: Position: after split: PositionStock(asset:Equity(57 [300077.SZA]), amount:600.0, cost_basis:51.9798, last_sale_price:50.779998779296875)
[2020-07-21 16:06:18.606274] INFO: Position: returning cash: 5.9984
[2020-07-21 16:06:18.670573] INFO: algo: handle_splits get splits [dt:2015-06-25 00:00:00+00:00] [asset:Equity(2182 [002279.SZA]), ratio:0.9985915422439575]
[2020-07-21 16:06:18.671661] INFO: Position: position stock handle split[sid:2182, orig_amount:600, new_amount:600.0, orig_cost:93.29999542236328, new_cost:93.1686, ratio:0.9985915422439575, last_sale_price:70.9000015258789]
[2020-07-21 16:06:18.672500] INFO: Position: after split: PositionStock(asset:Equity(2182 [002279.SZA]), amount:600.0, cost_basis:93.1686, last_sale_price:71.0)
[2020-07-21 16:06:18.673273] INFO: Position: returning cash: 60.0003
[2020-07-21 16:06:18.744470] INFO: algo: handle_splits get splits [dt:2015-06-29 00:00:00+00:00] [asset:Equity(14 [000716.SZA]), ratio:0.997473418712616]
[2020-07-21 16:06:18.745564] INFO: Position: position stock handle split[sid:14, orig_amount:1300, new_amount:1303.0, orig_cost:23.850000381469727, new_cost:23.7897, ratio:0.997473418712616, last_sale_price:23.689992904663086]
[2020-07-21 16:06:18.746410] INFO: Position: after split: PositionStock(asset:Equity(14 [000716.SZA]), amount:1303.0, cost_basis:23.7897, last_sale_price:23.75)
[2020-07-21 16:06:18.747129] INFO: Position: returning cash: 6.9382
[2020-07-21 16:06:19.009120] INFO: algo: handle_splits get splits [dt:2015-07-08 00:00:00+00:00] [asset:Equity(1040 [002133.SZA]), ratio:0.9865546822547913]
[2020-07-21 16:06:20.552253] INFO: algo: handle_splits get splits [dt:2015-09-17 00:00:00+00:00] [asset:Equity(609 [600446.SHA]), ratio:0.33293941617012024]
[2020-07-21 16:06:20.553406] INFO: Position: position stock handle split[sid:609, orig_amount:500, new_amount:1501.0, orig_cost:159.3560028076172, new_cost:53.0559, ratio:0.33293941617012024, last_sale_price:33.80999755859375]
[2020-07-21 16:06:20.554332] INFO: Position: after split: PositionStock(asset:Equity(609 [600446.SHA]), amount:1501.0, cost_basis:53.0559, last_sale_price:101.54999542236328)
[2020-07-21 16:06:20.555114] INFO: Position: returning cash: 26.1934
[2020-07-21 16:06:20.596177] INFO: algo: handle_splits get splits [dt:2015-09-18 00:00:00+00:00] [asset:Equity(1272 [300432.SZA]), ratio:0.3334013819694519]
[2020-07-21 16:06:20.597202] INFO: Position: position stock handle split[sid:1272, orig_amount:300, new_amount:899.0, orig_cost:55.999996185302734, new_cost:18.6705, ratio:0.3334013819694519, last_sale_price:16.340002059936523]
[2020-07-21 16:06:20.598037] INFO: Position: after split: PositionStock(asset:Equity(1272 [300432.SZA]), amount:899.0, cost_basis:18.6705, last_sale_price:49.0099983215332)
[2020-07-21 16:06:20.598790] INFO: Position: returning cash: 13.3384
[2020-07-21 16:06:24.139908] INFO: algo: handle_splits get splits [dt:2016-03-18 00:00:00+00:00] [asset:Equity(1288 [600145.SHA]), ratio:0.2527026832103729]
[2020-07-21 16:06:24.141030] INFO: Position: position stock handle split[sid:1288, orig_amount:6600, new_amount:26117.0, orig_cost:6.980000019073486, new_cost:1.7639, ratio:0.2527026832103729, last_sale_price:1.869999885559082]
[2020-07-21 16:06:24.141899] INFO: Position: after split: PositionStock(asset:Equity(1288 [600145.SHA]), amount:26117.0, cost_basis:1.7639, last_sale_price:7.400000095367432)
[2020-07-21 16:06:24.142692] INFO: Position: returning cash: 1.2138
[2020-07-21 16:06:24.980770] INFO: algo: handle_splits get splits [dt:2016-05-06 00:00:00+00:00] [asset:Equity(2588 [600654.SHA]), ratio:0.9957947731018066]
[2020-07-21 16:06:24.981869] INFO: Position: position stock handle split[sid:2588, orig_amount:5700, new_amount:5724.0, orig_cost:24.267894477174995, new_cost:24.1658, ratio:0.9957947731018066, last_sale_price:23.68000030517578]
[2020-07-21 16:06:24.982714] INFO: Position: after split: PositionStock(asset:Equity(2588 [600654.SHA]), amount:5724.0, cost_basis:24.1658, last_sale_price:23.780000686645508)
[2020-07-21 16:06:24.983501] INFO: Position: returning cash: 1.6817
[2020-07-21 16:06:25.126095] INFO: algo: handle_splits get splits [dt:2016-05-16 00:00:00+00:00] [asset:Equity(1899 [300081.SZA]), ratio:0.3987395465373993]
[2020-07-21 16:06:25.127429] INFO: Position: position stock handle split[sid:1899, orig_amount:100, new_amount:250.0, orig_cost:35.130001068115234, new_cost:14.0077, ratio:0.3987395465373993, last_sale_price:13.919997215270996]
[2020-07-21 16:06:25.128781] INFO: Position: after split: PositionStock(asset:Equity(1899 [300081.SZA]), amount:250.0, cost_basis:14.0077, last_sale_price:34.90999984741211)
[2020-07-21 16:06:25.129853] INFO: Position: returning cash: 11.0006
[2020-07-21 16:06:25.223291] INFO: algo: handle_splits get splits [dt:2016-05-20 00:00:00+00:00] [asset:Equity(1476 [300336.SZA]), ratio:0.9957627654075623]
[2020-07-21 16:06:25.224489] INFO: Position: position stock handle split[sid:1476, orig_amount:900, new_amount:903.0, orig_cost:28.599998474121094, new_cost:28.4788, ratio:0.9957627654075623, last_sale_price:23.500001907348633]
[2020-07-21 16:06:25.225436] INFO: Position: after split: PositionStock(asset:Equity(1476 [300336.SZA]), amount:903.0, cost_basis:28.4788, last_sale_price:23.600000381469727)
[2020-07-21 16:06:25.226360] INFO: Position: returning cash: 19.4989
[2020-07-21 16:06:26.183261] INFO: algo: handle_splits get splits [dt:2016-07-20 00:00:00+00:00] [asset:Equity(2279 [600814.SHA]), ratio:0.9907918572425842]
[2020-07-21 16:06:26.184374] INFO: Position: position stock handle split[sid:2279, orig_amount:200, new_amount:201.0, orig_cost:10.530000686645508, new_cost:10.433, ratio:0.9907918572425842, last_sale_price:10.760000228881836]
[2020-07-21 16:06:26.185222] INFO: Position: after split: PositionStock(asset:Equity(2279 [600814.SHA]), amount:201.0, cost_basis:10.433, last_sale_price:10.860000610351562)
[2020-07-21 16:06:26.186008] INFO: Position: returning cash: 9.2401
[2020-07-21 16:06:26.257717] INFO: algo: handle_splits get splits [dt:2016-07-22 00:00:00+00:00] [asset:Equity(2859 [000715.SZA]), ratio:0.9949274659156799]
[2020-07-21 16:06:26.258830] INFO: Position: position stock handle split[sid:2859, orig_amount:600, new_amount:603.0, orig_cost:14.459999084472656, new_cost:14.3867, ratio:0.9949274659156799, last_sale_price:13.729998588562012]
[2020-07-21 16:06:26.259697] INFO: Position: after split: PositionStock(asset:Equity(2859 [000715.SZA]), amount:603.0, cost_basis:14.3867, last_sale_price:13.799999237060547)
[2020-07-21 16:06:26.260523] INFO: Position: returning cash: 0.8106
[2020-07-21 16:06:26.646861] INFO: algo: handle_splits get splits [dt:2016-08-12 00:00:00+00:00] [asset:Equity(1144 [600578.SHA]), ratio:0.9562363624572754]
[2020-07-21 16:06:26.647983] INFO: Position: position stock handle split[sid:1144, orig_amount:4200, new_amount:4392.0, orig_cost:4.559999942779541, new_cost:4.3604, ratio:0.9562363624572754, last_sale_price:4.37000036239624]
[2020-07-21 16:06:26.648849] INFO: Position: after split: PositionStock(asset:Equity(1144 [600578.SHA]), amount:4392.0, cost_basis:4.3604, last_sale_price:4.570000171661377)
[2020-07-21 16:06:26.649575] INFO: Position: returning cash: 0.9592
[2020-07-21 16:06:29.673456] INFO: algo: handle_splits get splits [dt:2016-12-28 00:00:00+00:00] [asset:Equity(834 [600725.SHA]), ratio:0.5]
[2020-07-21 16:06:29.674626] INFO: Position: position stock handle split[sid:834, orig_amount:4200, new_amount:8400.0, orig_cost:5.6392858028411865, new_cost:2.8196, ratio:0.5, last_sale_price:2.8499999046325684]
[2020-07-21 16:06:29.675566] INFO: Position: after split: PositionStock(asset:Equity(834 [600725.SHA]), amount:8400.0, cost_basis:2.8196, last_sale_price:5.699999809265137)
[2020-07-21 16:06:29.676413] INFO: Position: returning cash: 0.0
[2020-07-21 16:06:29.735035] INFO: Performance: Simulated 488 trading days out of 488.
[2020-07-21 16:06:29.736094] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2020-07-21 16:06:29.736930] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2020-07-21 16:06:36.953791] INFO: moduleinvoker: backtest.v8 运行完成[25.403974s].
[2020-07-21 16:06:36.954994] INFO: moduleinvoker: trade.v4 运行完成[25.439709s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-2ec8e5b705b04eb69e90adc9cbb2adf6"}/bigcharts-data-end
- 收益率-46.98%
- 年化收益率-27.94%
- 基准收益率-6.33%
- 阿尔法-0.27
- 贝塔0.87
- 夏普比率-0.73
- 胜率0.55
- 盈亏比0.59
- 收益波动率38.56%
- 信息比率-0.06
- 最大回撤78.41%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-e97145b7c15e4b23a93410b08f4f6487"}/bigcharts-data-end