Stockranker

StockRanker是适用于金融数据预测的常用有监督型机器学习算法。 StockRanker算法是专为选股量化设计的,它融合了排序学习和梯度提升树(GBDT)的核心技术,形成了一种独特的选股策略。 简单来说,StockRanker = 选股策略 + 排序学习 + 梯度提升树。 Stockranker也是一款专为金融投资者打造的智能股票分析工具,通过大数据分析和机器学习算法,实时评估股票市场表现,精准筛选具有投资潜力的优质股票。它帮助投资者在浩瀚的股海中快速定位价值洼地,提升投资决策效率和准确性,是投资者驰骋金融市场的得力助手。

如何利用stockranker开发做空策略?

问题

我试过用stockrank来标注做空股票和期货,(默认参数,回测做空的代码都写好)标注上加-,如-shift(close,-2)/shift(open,-1)或-shift(open,-1)/shift(open,-2),随机生成几百甚至上千的策略回测所取得的效果普遍没有做多好,大多数情况甚至连正收益都达不到,而做多好多都轻松取得正收益,是算法的特性还是有其他窍门?

视频

https://www.bilibili.com/video/BV1Ny4y1E7KJ

\

策略源

更新时间:2024-06-07 10:55

如何优化StockRanker算法

问题

使用stockranker等排序算法开发策略并进行实盘,发现有时排在第一的股票反而不如排在二三位的股票收益好,如何对策略和算法进行优化,以实现更好的效果呢?

思路

https://bigquant.com/wiki/doc/xinhao-fangfa-oxACTyy7MT

  • 数据质量
  • 算法质量
  • 算法参数调优
  • 模型融合

视频

[https://www.bilibili.com/video/BV1nT411A7f5?share_source=copy_web&vd_source=2e7dc1240ea373ea6eba1134af8dd086]

更新时间:2024-06-07 10:55

上涨和下跌预测的stockranker模型组合(买入)

【旧版说明】此文档为旧版,相关新版文档可参考:🌟102-第一个AI策略

https://bigquant.com/experimentshare/1c44e0bf56db424d8f2a5e617759a300

\

更新时间:2024-06-07 10:55

上涨和下跌预测的stockranker模型组合(卖出)

https://bigquant.com/experimentshare/962ef5e58f1e41acbeecaa0161fc56c6

\

更新时间:2024-06-07 10:55

如何用catboost替换stockranker算法

问题

请教catboost的详细使用方法,对于原先使用xgboost或者stockranker的策略,如何用catboost替换掉xgboost或者stockranker?

视频

https://www.bilibili.com/video/BV1US4y1n79r/?spm_id_from=333.999.0.0

策略源码

[https://bigquant.com/experimentshare/c2422c6678a8

更新时间:2024-06-07 10:55

StockRanker多因子期货策略

问题

能否stockranker选期货的模板,十几个随机品种,周期一小时1bar。

视频

https://www.bilibili.com/video/BV1SY411x7m4?share_source=copy_web

策略源码

[https://bigquant.com/experimentshare/8c98cb179bd54386867bd6dad86aebf3](https://bigquant.com/experime

更新时间:2024-06-07 10:55

Stockranker评分的另类用法

新版请见

Stockranker评分的另类用法

策略逻辑

Stockranker是专为选股量化而设计的机器学习算法,其选股思路是根据训练得到的模型,计算股票池中股票的当日评分,根据评分对股票池中的股票进行排序,排序靠前的股票就是当日选出的股票。

这种选股逻辑意味着不论股票的评分是多少,只要排序靠前就能被选中。实际上排序靠前股票的评分有不小差距。而评分反应的是股票的投资价值,评分高表明该股票的投资价值高,评分低表明该股票的投资价值低。因此排序算法仅能反应当天的相对投资价值

更新时间:2024-05-24 10:58

LSTM大盘择时+Stockranker选股

请参考新版的大盘择时

机器学习+择时+跟踪止损+技术分析

策略案例

https://bigquant.com/experimentshare/a5ed3eddf32f4e4dad4811a1acc257f0

\

更新时间:2024-05-24 10:28

用StockRanker算法实现A股股票选股

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/72d5601550164505aad979f7265f8fec

\

更新时间:2024-05-20 00:50

StockRanker选股+随机森林大盘风控

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 07:25

根据隔夜涨跌因子构建stockranker模型回测

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 07:06

StockRanker多因子选股策略

StockRanker多因子选股策略

https://bigquant.com/experimentshare/1b8882bded4c4127a6c6edc792af662d

\

更新时间:2024-05-17 02:33

【历史文档】高阶技巧-如何固化深度学习、随机森林和StockRanker模型|模型固化

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 11:00

HYF一个可视化stockranker 模板策略

https://bigquant.com/experimentshare/6508a3b7858b4d098a358a880b18b332

训练结果展示: \n {w:100}{w:100}

更新时间:2024-05-16 06:36

StockRanker模型可视化

导语

本文介绍了如何用BigQuant的策略生成器进行StockRanker模型可视化。


使用StockRanker模型

在策略生成器中,可以直接菜单化操作的方式新建一个StockRanker实验,通过plot_model我们可以看到StockRanker模型是什么样子的,这样就能够完全透明的将模型可视化的展示出来,包括结构和参数等信息。

# m6 = M.stock_ranker_train.v2
m6.plot_model()

一般情况下AI机器在大量数据上训练出来的模型会远比人做出来的复杂,这也是AI有更好的效果的原因之一。

更新时间:2024-05-16 06:35

【历史文档】高阶技巧-如何画StockRanker模型的NDCG曲线

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 03:45

【历史文档】策略示例-基于StockRanker的基金策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 02:34

【历史文档】策略示例-基于StockRanker的AI量化选股策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 01:59

【历史文档】策略示例-StockRanker模型结果解读

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 01:58

【历史文档】算子样例-StockRanker预测

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 08:22

【历史文档】算子样例-StockRanker训练曲线(Learning Curve)

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 08:22

【历史文档】算子样例-StockRanker训练

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据

更新时间:2024-05-15 08:21

stockranker模型训练预测

更新时间:2024-05-15 02:10

如何调优,数据小于20万行,择时,StockRanker训练

更新时间:2024-01-23 03:53

新版的stockranker DAI如何固化模型

如结果为m5.stockRanker(DAI)

用m5.model获取DataSource

import pandas as pd
pd.DataFrame([DataSource("datasource的name").read()]).to_pickle('/home/bigquant/work/userlib/model.csv') 

再在自定义python模块中输入以下内容是吗

def bigquant_run(input_1, input_2, input_3):
    data = pd.read_pickle('/home/

更新时间:2024-01-11 07:52

分页第1页第2页第3页
{link}