复制链接
克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-11425:features_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-7174:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-490:input_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-140:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-1918:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-224:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-175:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-660:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-126:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"-126:test_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-113:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-126:model"},{"to_node_id":"-147:input_data","from_node_id":"-140:data"},{"to_node_id":"-86:input_data","from_node_id":"-147:data"},{"to_node_id":"-4816:input_2","from_node_id":"-147:data"},{"to_node_id":"-1918:options_data","from_node_id":"-490:sorted_data"},{"to_node_id":"-4816:input_1","from_node_id":"-490:sorted_data"},{"to_node_id":"-106:features","from_node_id":"-11425:data"},{"to_node_id":"-113:features","from_node_id":"-11425:data"},{"to_node_id":"-140:features","from_node_id":"-11425:data"},{"to_node_id":"-147:features","from_node_id":"-11425:data"},{"to_node_id":"-236:input_1","from_node_id":"-11425:data"},{"to_node_id":"-126:features","from_node_id":"-236:data_1"},{"to_node_id":"-224:features","from_node_id":"-148:data"},{"to_node_id":"-189:data1","from_node_id":"-224:data"},{"to_node_id":"-7174:data2","from_node_id":"-189:data"},{"to_node_id":"-175:input_2","from_node_id":"-12762:data"},{"to_node_id":"-196:input_ds","from_node_id":"-175:data_1"},{"to_node_id":"-189:data2","from_node_id":"-196:data"},{"to_node_id":"-8872:predictions","from_node_id":"-4816:data_2"},{"to_node_id":"-4816:input_3","from_node_id":"-660:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nhigh_0\nhigh_1\nhigh_2\nhigh_3\nhigh_4\nlow_0\nlow_1\nlow_2\nlow_3\nlow_4\n# 5日平均换手率\navg_turn_5 \n# 5日平均振幅\n(high_0-low_0+high_1-low_1+high_2-low_2+high_3-low_3+high_4-low_4)/5 \n# 市盈率LYR\npe_lyr_0\n# 5日净主动买入额\nmf_net_amount_5 \n# 10日净主动买入额\nmf_net_amount_10 \n# 20日净主动买入额\nmf_net_amount_20\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"300","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-126","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"20","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":"1","type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-126"},{"name":"features","node_id":"-126"},{"name":"test_ds","node_id":"-126"},{"name":"base_model","node_id":"-126"}],"output_ports":[{"name":"model","node_id":"-126"},{"name":"feature_gains","node_id":"-126"},{"name":"m_lazy_run","node_id":"-126"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-140","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"300","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-140"},{"name":"features","node_id":"-140"}],"output_ports":[{"name":"data","node_id":"-140"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-147","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-147"},{"name":"features","node_id":"-147"}],"output_ports":[{"name":"data","node_id":"-147"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-490","module_id":"BigQuantSpace.sort.sort-v4","parameters":[{"name":"sort_by","value":"score","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-490"},{"name":"sort_by_ds","node_id":"-490"}],"output_ports":[{"name":"sorted_data","node_id":"-490"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-11425","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\n#周线金叉,择时思路\n# 当天股价在收盘时的涨跌停状态(1跌停,2未涨跌停,3涨停)\nclose_0\nhigh_1\nopen_0\nlow_0\nst_status_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-11425"}],"output_ports":[{"name":"data","node_id":"-11425"}],"cacheable":true,"seq_num":23,"comment":"择时特征","comment_collapsed":true},{"node_id":"-236","module_id":"BigQuantSpace.features_short.features_short-v1","parameters":[],"input_ports":[{"name":"input_1","node_id":"-236"}],"output_ports":[{"name":"data_1","node_id":"-236"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-1918","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument =0.1\n context.options['hold_days'] = 5\n \n # 这一段感觉是在为盘前准备函数写的,当order.amount>0时,认为是买入,<0卖出。\n from zipline.finance.slippage import SlippageModel\n class FixedPriceSlippage(SlippageModel):\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price = data.current(order.asset, price_field)\n else:\n price = data.current(order.asset, self._price_field_buy)\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 设置price_field,默认是开盘买入,收盘卖出\n context.fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='close')\n context.set_slippage(us_equities=context.fix_slippage)","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 获取当前持仓\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n \n today = data.current_dt.strftime('%Y-%m-%d')\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == today]\n \n \n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n \n \n # 2. 根据需要加入移动止赢止损模块、固定天数卖出模块、ST或退市股卖出模块\n stock_sold = [] # 记录卖出的股票,防止多次卖出出现空单\n \n# #------------------------START:止赢止损模块(含建仓期)---------------\n# current_stopwin_stock=[]\n# current_stoploss_stock = [] \n# positions_cost={e.symbol:p.cost_basis for e,p in context.portfolio.positions.items()}\n# if len(positions)>0:\n# for instrument in positions.keys():\n# stock_cost=positions_cost[instrument] \n# stock_market_price=data.current(context.symbol(instrument),'price') \n# volume_since_buy = data.history(context.symbol(instrument), 'volume', 6, '1d')\n# # 赚60%且为可交易状态就止盈\n# if stock_market_price/stock_cost-1>=0.5 and data.can_trade(context.symbol(instrument)):\n# context.order_target_percent(context.symbol(instrument),0)\n# cash_for_sell -= positions[instrument]\n# current_stopwin_stock.append(instrument)\n# # 亏5%并且为可交易状态就止损\n# if stock_market_price/stock_cost-1 <= -0.05 and data.can_trade(context.symbol(instrument)): \n# context.order_target_percent(context.symbol(instrument),0)\n# cash_for_sell -= positions[instrument]\n# current_stoploss_stock.append(instrument)\n# # 放天量 止损:\n# # if (volume_since_buy[0]>1.5*volume_since_buy[1]) |(volume_since_buy[0]>1.5*(volume_since_buy[1]+volume_since_buy[2]+volume_since_buy[3]+volume_since_buy[4]+volume_since_buy[5])/5):\n# # context.order_target_percent(context.symbol(instrument),0)\n# # cash_for_sell -= positions[instrument]\n# # current_stoploss_stock.append(instrument)\n# if len(current_stopwin_stock)>0:\n# # print(today,'止盈股票列表',current_stopwin_stock)\n# stock_sold += current_stopwin_stock\n# if len(current_stoploss_stock)>0:\n# # print(today,'止损股票列表',current_stoploss_stock)\n# stock_sold += current_stoploss_stock\n# #--------------------------END: 止赢止损模块--------------------------\n \n# #--------------------------START:持有固定天数卖出(不含建仓期)-----------\n# current_stopdays_stock = []\n# positions_lastdate = {e.symbol:p.last_sale_date for e,p in context.portfolio.positions.items()}\n# # 不是建仓期(在前hold_days属于建仓期)\n# if not is_staging:\n# for instrument in positions.keys():\n# #如果上面的止盈止损已经卖出过了,就不要重复卖出以防止产生空单\n# if instrument in stock_sold:\n# continue\n# # 今天和上次交易的时间相隔hold_days就全部卖出 datetime.timedelta(context.options['hold_days'])也可以换成自己需要的天数,比如datetime.timedelta(5)\n# if data.current_dt - positions_lastdate[instrument]>=datetime.timedelta(22) and data.can_trade(context.symbol(instrument)):\n# context.order_target_percent(context.symbol(instrument), 0)\n# current_stopdays_stock.append(instrument)\n# cash_for_sell -= positions[instrument]\n# if len(current_stopdays_stock)>0: \n# # print(today,'固定天数卖出列表',current_stopdays_stock)\n# stock_sold += current_stopdays_stock\n# #------------------------- END:持有固定天数卖出-----------------------\n \n# #-------------------------- START: ST和退市股卖出 --------------------- \n# st_stock_list = []\n# for instrument in positions.keys():\n# try:\n# instrument_name = ranker_prediction[ranker_prediction.instrument==instrument].name.values[0]\n# # 如果股票状态变为了st或者退市 则卖出\n# if 'ST' in instrument_name or '退' in instrument_name:\n# if instrument in stock_sold:\n# continue\n# if data.can_trade(context.symbol(instrument)):\n# context.order_target(context.symbol(instrument), 0)\n# st_stock_list.append(instrument)\n# cash_for_sell -= positions[instrument]\n# except:\n# continue\n# if st_stock_list!=[]:\n# # print(today,'持仓出现st股/退市股',st_stock_list,'进行卖出处理') \n# stock_sold += st_stock_list\n\n# #-------------------------- END: ST和退市股卖出 --------------------- \n \n \n # 3. 生成轮仓卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in positions)])))\n for instrument in instruments:\n # 如果资金够了就不卖出了\n if cash_for_sell <= 0:\n break\n #防止多个止损条件同时满足,出现多次卖出产生空单\n if instrument in stock_sold:\n continue\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n stock_sold.append(instrument)\n\n # 4. 生成轮仓买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n # 计算今日跌停的股票\n #dt_list = list(ranker_prediction[ranker_prediction.price_limit_status_0==1].instrument)\n # 计算今日ST/退市的股票\n st_list = list(ranker_prediction[ranker_prediction.name.str.contains('ST')|ranker_prediction.name.str.contains('退')].instrument)\n # 计算所有禁止买入的股票池\n banned_list = stock_sold+st_list\n buy_cash_weights = context.stock_weights\n buy_instruments=[k for k in list(ranker_prediction.instrument) if k not in banned_list][:len(buy_cash_weights)]\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n current_price = data.current(context.symbol(instrument), 'price')\n amount = math.floor(cash / current_price - cash / current_price % 100)\n context.order(context.symbol(instrument), amount)\n \n\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"def bigquant_run(context, data):\n # 获取涨跌停状态数据\n df_price_limit_status = context.ranker_prediction.set_index('date')\n today=data.current_dt.strftime('%Y-%m-%d')\n # 得到当前未完成订单\n for orders in get_open_orders().values():\n # 循环,撤销订单\n for _order in orders:\n ins=str(_order.sid.symbol)\n try:\n #判断一下如果当日涨停(3),则取消卖单\n if df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.ix[today]>2 and _order.amount<0:\n cancel_order(_order)\n print(today,'尾盘涨停取消卖单',ins) \n except:\n continue","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"1000001","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1918"},{"name":"options_data","node_id":"-1918"},{"name":"history_ds","node_id":"-1918"},{"name":"benchmark_ds","node_id":"-1918"},{"name":"trading_calendar","node_id":"-1918"}],"output_ports":[{"name":"raw_perf","node_id":"-1918"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-148","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nname","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-148"}],"output_ports":[{"name":"data","node_id":"-148"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-224","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"instruments_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-224"},{"name":"features","node_id":"-224"}],"output_ports":[{"name":"data","node_id":"-224"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-189","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date","type":"Literal","bound_global_parameter":null},{"name":"how","value":"left","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-189"},{"name":"data2","node_id":"-189"}],"output_ports":[{"name":"data","node_id":"-189"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-12762","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\n#bm_0 = where(close/shift(close,5)-1<-0.05,1,0)\n# 如果macd中的dif下穿macd中的dea,则bm_0等于1,否则等于0\nbm_0=where(ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4)<0,1,0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-12762"}],"output_ports":[{"name":"data","node_id":"-12762"}],"cacheable":true,"seq_num":11,"comment":"卖出条件","comment_collapsed":true},{"node_id":"-175","module_id":"BigQuantSpace.index_feature_extract.index_feature_extract-v3","parameters":[{"name":"before_days","value":100,"type":"Literal","bound_global_parameter":null},{"name":"index","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-175"},{"name":"input_2","node_id":"-175"}],"output_ports":[{"name":"data_1","node_id":"-175"},{"name":"data_2","node_id":"-175"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.select_columns.select_columns-v3","parameters":[{"name":"columns","value":"date,bm_0","type":"Literal","bound_global_parameter":null},{"name":"reverse_select","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-196"},{"name":"columns_ds","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-7174","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"left","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-7174"},{"name":"data2","node_id":"-7174"}],"output_ports":[{"name":"data","node_id":"-7174"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-4816","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n df_value = pd.merge(left=df,right=input_3.read(),on=['date','instrument'],how='inner')\n return Outputs(data_1=DataSource.write_df(df), data_2=DataSource.write_df(df_value), data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-4816"},{"name":"input_2","node_id":"-4816"},{"name":"input_3","node_id":"-4816"}],"output_ports":[{"name":"data_1","node_id":"-4816"},{"name":"data_2","node_id":"-4816"},{"name":"data_3","node_id":"-4816"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-8872","module_id":"BigQuantSpace.metrics_regression.metrics_regression-v1","parameters":[{"name":"explained_variance_score","value":"True","type":"Literal","bound_global_parameter":null},{"name":"mean_absolute_error","value":"True","type":"Literal","bound_global_parameter":null},{"name":"mean_squared_error","value":"True","type":"Literal","bound_global_parameter":null},{"name":"mean_squared_log_error","value":"False","type":"Literal","bound_global_parameter":null},{"name":"median_absolute_error","value":"True","type":"Literal","bound_global_parameter":null},{"name":"r2_score","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"predictions","node_id":"-8872"}],"output_ports":[{"name":"report","node_id":"-8872"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-660","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-660"}],"output_ports":[{"name":"data","node_id":"-660"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='92,187,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='692,-36,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='247,374,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='585,750,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='974,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='414,449,200,200'/><node_position Node='-86' Position='985,501,200,200'/><node_position Node='-106' Position='378,188,200,200'/><node_position Node='-113' Position='381,283,200,200'/><node_position Node='-126' Position='529,591,200,200'/><node_position Node='-140' Position='917,208,200,200'/><node_position Node='-147' Position='972,297,200,200'/><node_position Node='-490' Position='985,862,200,200'/><node_position Node='-11425' Position='612,79,200,200'/><node_position Node='-236' Position='675,299,200,200'/><node_position Node='-1918' Position='879,1007,200,200'/><node_position Node='-148' Position='1273,147,200,200'/><node_position Node='-224' Position='1298,245,200,200'/><node_position Node='-189' Position='1355,371,200,200'/><node_position Node='-12762' Position='1634,78,200,200'/><node_position Node='-175' Position='1637,190,200,200'/><node_position Node='-196' Position='1603,285,200,200'/><node_position Node='-7174' Position='998,771,200,200'/><node_position Node='-4816' Position='574.3031005859375,939.698486328125,200,200'/><node_position Node='-8872' Position='502.4732666015625,1063.622314453125,200,200'/><node_position Node='-660' Position='904,644,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [7]:
    # 本代码由可视化策略环境自动生成 2023年3月2日 20:41
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m4_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument =0.1
        context.options['hold_days'] = 5
        
        # 这一段感觉是在为盘前准备函数写的,当order.amount>0时,认为是买入,<0卖出。
        from zipline.finance.slippage import SlippageModel
        class FixedPriceSlippage(SlippageModel):
            def process_order(self, data, order, bar_volume=0, trigger_check_price=0):
                if order.limit is None:
                    price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell
                    price = data.current(order.asset, price_field)
                else:
                    price = data.current(order.asset, self._price_field_buy)
                # 返回希望成交的价格和数量
                return (price, order.amount)
        # 设置price_field,默认是开盘买入,收盘卖出
        context.fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='close')
        context.set_slippage(us_equities=context.fix_slippage)
    # 回测引擎:每日数据处理函数,每天执行一次
    def m4_handle_data_bigquant_run(context, data):
        # 获取当前持仓
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.portfolio.positions.items()}
        
        today = data.current_dt.strftime('%Y-%m-%d')
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == today]
        
        
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
       
        
        # 2. 根据需要加入移动止赢止损模块、固定天数卖出模块、ST或退市股卖出模块
        stock_sold = [] # 记录卖出的股票,防止多次卖出出现空单
        
    #     #------------------------START:止赢止损模块(含建仓期)---------------
    #     current_stopwin_stock=[]
    #     current_stoploss_stock = []   
    #     positions_cost={e.symbol:p.cost_basis for e,p in context.portfolio.positions.items()}
    #     if len(positions)>0:
    #         for instrument in positions.keys():
    #             stock_cost=positions_cost[instrument]  
    #             stock_market_price=data.current(context.symbol(instrument),'price')  
    #             volume_since_buy = data.history(context.symbol(instrument), 'volume', 6, '1d')
    #             # 赚60%且为可交易状态就止盈
    #             if stock_market_price/stock_cost-1>=0.5 and data.can_trade(context.symbol(instrument)):
    #                 context.order_target_percent(context.symbol(instrument),0)
    #                 cash_for_sell -= positions[instrument]
    #                 current_stopwin_stock.append(instrument)
    #             # 亏5%并且为可交易状态就止损
    #             if stock_market_price/stock_cost-1 <= -0.05 and data.can_trade(context.symbol(instrument)):   
    #                 context.order_target_percent(context.symbol(instrument),0)
    #                 cash_for_sell -= positions[instrument]
    #                 current_stoploss_stock.append(instrument)
    #             # 放天量  止损:
    # #             if  (volume_since_buy[0]>1.5*volume_since_buy[1]) |(volume_since_buy[0]>1.5*(volume_since_buy[1]+volume_since_buy[2]+volume_since_buy[3]+volume_since_buy[4]+volume_since_buy[5])/5):
    # #                 context.order_target_percent(context.symbol(instrument),0)
    # #                 cash_for_sell -= positions[instrument]
    # #                 current_stoploss_stock.append(instrument)
    #         if len(current_stopwin_stock)>0:
    # #             print(today,'止盈股票列表',current_stopwin_stock)
    #             stock_sold += current_stopwin_stock
    #         if len(current_stoploss_stock)>0:
    # #             print(today,'止损股票列表',current_stoploss_stock)
    #             stock_sold += current_stoploss_stock
    #     #--------------------------END: 止赢止损模块--------------------------
        
    #     #--------------------------START:持有固定天数卖出(不含建仓期)-----------
    #     current_stopdays_stock = []
    #     positions_lastdate = {e.symbol:p.last_sale_date for e,p in context.portfolio.positions.items()}
    #     # 不是建仓期(在前hold_days属于建仓期)
    #     if not is_staging:
    #         for instrument in positions.keys():
    #             #如果上面的止盈止损已经卖出过了,就不要重复卖出以防止产生空单
    #             if instrument in stock_sold:
    #                 continue
    #             # 今天和上次交易的时间相隔hold_days就全部卖出 datetime.timedelta(context.options['hold_days'])也可以换成自己需要的天数,比如datetime.timedelta(5)
    #             if data.current_dt - positions_lastdate[instrument]>=datetime.timedelta(22) and data.can_trade(context.symbol(instrument)):
    #                 context.order_target_percent(context.symbol(instrument), 0)
    #                 current_stopdays_stock.append(instrument)
    #                 cash_for_sell -= positions[instrument]
    #         if len(current_stopdays_stock)>0:        
    # #             print(today,'固定天数卖出列表',current_stopdays_stock)
    #             stock_sold += current_stopdays_stock
    #     #-------------------------  END:持有固定天数卖出-----------------------
        
    #     #-------------------------- START: ST和退市股卖出 ---------------------  
    #     st_stock_list = []
    #     for instrument in positions.keys():
    #         try:
    #             instrument_name = ranker_prediction[ranker_prediction.instrument==instrument].name.values[0]
    #             # 如果股票状态变为了st或者退市 则卖出
    #             if 'ST' in instrument_name or '退' in instrument_name:
    #                 if instrument in stock_sold:
    #                     continue
    #                 if data.can_trade(context.symbol(instrument)):
    #                     context.order_target(context.symbol(instrument), 0)
    #                     st_stock_list.append(instrument)
    #                     cash_for_sell -= positions[instrument]
    #         except:
    #             continue
    #     if st_stock_list!=[]:
    # #         print(today,'持仓出现st股/退市股',st_stock_list,'进行卖出处理')    
    #         stock_sold += st_stock_list
    
    #     #-------------------------- END: ST和退市股卖出 --------------------- 
        
        
        # 3. 生成轮仓卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in positions)])))
            for instrument in instruments:
                # 如果资金够了就不卖出了
                if cash_for_sell <= 0:
                    break
                #防止多个止损条件同时满足,出现多次卖出产生空单
                if instrument in stock_sold:
                    continue
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                stock_sold.append(instrument)
    
        # 4. 生成轮仓买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        # 计算今日跌停的股票
        #dt_list = list(ranker_prediction[ranker_prediction.price_limit_status_0==1].instrument)
        # 计算今日ST/退市的股票
        st_list = list(ranker_prediction[ranker_prediction.name.str.contains('ST')|ranker_prediction.name.str.contains('退')].instrument)
        # 计算所有禁止买入的股票池
        banned_list = stock_sold+st_list
        buy_cash_weights = context.stock_weights
        buy_instruments=[k for k in list(ranker_prediction.instrument) if k not in banned_list][:len(buy_cash_weights)]
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                current_price = data.current(context.symbol(instrument), 'price')
                amount = math.floor(cash / current_price - cash / current_price % 100)
                context.order(context.symbol(instrument), amount)
        
    
    
    def m4_before_trading_start_bigquant_run(context, data):
        # 获取涨跌停状态数据
        df_price_limit_status = context.ranker_prediction.set_index('date')
        today=data.current_dt.strftime('%Y-%m-%d')
        # 得到当前未完成订单
        for orders in get_open_orders().values():
            # 循环,撤销订单
            for _order in orders:
                ins=str(_order.sid.symbol)
                try:
                    #判断一下如果当日涨停(3),则取消卖单
                    if  df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.ix[today]>2 and _order.amount<0:
                        cancel_order(_order)
                        print(today,'尾盘涨停取消卖单',ins) 
                except:
                    continue
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m26_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        pred_label = input_1.read_pickle()
        df = input_2.read_df()
        df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
        df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
        df_value = pd.merge(left=df,right=input_3.read(),on=['date','instrument'],how='inner')
        return Outputs(data_1=DataSource.write_df(df), data_2=DataSource.write_df(df_value), data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m26_post_run_bigquant_run(outputs):
        return outputs
    
    
    m1 = M.instruments.v2(
        start_date='2016-01-01',
        end_date='2019-12-31',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=True
    )
    
    m3 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    high_0
    high_1
    high_2
    high_3
    high_4
    low_0
    low_1
    low_2
    low_3
    low_4
    # 5日平均换手率
    avg_turn_5   
    # 5日平均振幅
    (high_0-low_0+high_1-low_1+high_2-low_2+high_3-low_3+high_4-low_4)/5 
    # 市盈率LYR
    pe_lyr_0
    # 5日净主动买入额
    mf_net_amount_5 
    # 10日净主动买入额
    mf_net_amount_10 
    # 20日净主动买入额
    mf_net_amount_20
    
    """
    )
    
    m23 = M.input_features.v1(
        features_ds=m3.data,
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    #周线金叉,择时思路
    # 当天股价在收盘时的涨跌停状态(1跌停,2未涨跌停,3涨停)
    close_0
    high_1
    open_0
    low_0
    st_status_0
    """
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m23.data,
        start_date='',
        end_date='',
        before_start_days=300
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m23.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m7 = M.join.v3(
        data1=m2.data,
        data2=m16.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m12 = M.dropnan.v1(
        input_data=m7.data
    )
    
    m24 = M.features_short.v1(
        input_1=m23.data
    )
    
    m17 = M.stock_ranker_train.v6(
        training_ds=m12.data,
        features=m24.data_1,
        test_ds=m12.data,
        learning_algorithm='排序',
        number_of_leaves=30,
        minimum_docs_per_leaf=1000,
        number_of_trees=20,
        learning_rate=0.1,
        max_bins=1023,
        feature_fraction=1,
        data_row_fraction=1,
        plot_charts=True,
        ndcg_discount_base=1,
        m_lazy_run=False
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2020-01-01'),
        end_date=T.live_run_param('trading_date', '2021-12-31'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m18 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m23.data,
        start_date='',
        end_date='',
        before_start_days=300
    )
    
    m19 = M.derived_feature_extractor.v3(
        input_data=m18.data,
        features=m23.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m13 = M.dropnan.v1(
        input_data=m19.data
    )
    
    m8 = M.stock_ranker_predict.v5(
        model=m17.model,
        data=m13.data,
        m_lazy_run=False
    )
    
    m22 = M.sort.v4(
        input_ds=m8.predictions,
        sort_by='score',
        group_by='date',
        keep_columns='--',
        ascending=False
    )
    
    m4 = M.trade.v4(
        instruments=m9.data,
        options_data=m22.sorted_data,
        start_date='',
        end_date='',
        initialize=m4_initialize_bigquant_run,
        handle_data=m4_handle_data_bigquant_run,
        before_trading_start=m4_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000001,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark=''
    )
    
    m27 = M.advanced_auto_labeler.v2(
        instruments=m9.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)-1
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=False
    )
    
    m26 = M.cached.v3(
        input_1=m22.sorted_data,
        input_2=m19.data,
        input_3=m27.data,
        run=m26_run_bigquant_run,
        post_run=m26_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m21 = M.metrics_regression.v1(
        predictions=m26.data_2,
        explained_variance_score=True,
        mean_absolute_error=True,
        mean_squared_error=True,
        mean_squared_log_error=False,
        median_absolute_error=True,
        r2_score=True
    )
    
    m5 = M.input_features.v1(
        features="""
    # #号开始的表示注释,注释需单独一行
    # 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
    name"""
    )
    
    m6 = M.use_datasource.v1(
        instruments=m9.data,
        features=m5.data,
        datasource_id='instruments_CN_STOCK_A',
        start_date='',
        end_date=''
    )
    
    m11 = M.input_features.v1(
        features="""
    # #号开始的表示注释,注释需单独一行
    # 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
    #bm_0 = where(close/shift(close,5)-1<-0.05,1,0)
    # 如果macd中的dif下穿macd中的dea,则bm_0等于1,否则等于0
    bm_0=where(ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4)<0,1,0)"""
    )
    
    m14 = M.index_feature_extract.v3(
        input_1=m9.data,
        input_2=m11.data,
        before_days=100,
        index='000300.HIX'
    )
    
    m20 = M.select_columns.v3(
        input_ds=m14.data_1,
        columns='date,bm_0',
        reverse_select=False
    )
    
    m10 = M.join.v3(
        data1=m6.data,
        data2=m20.data,
        on='date',
        how='left',
        sort=True
    )
    
    m25 = M.join.v3(
        data1=m8.predictions,
        data2=m10.data,
        on='date,instrument',
        how='left',
        sort=False
    )
    
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-6bd753c6b60e47cbb1096f764551a59d"}/bigcharts-data-end
    ---------------------------------------------------------------------------
    UnpicklingError                           Traceback (most recent call last)
    <ipython-input-7-9f2363dc1826> in <module>
        214 )
        215 
    --> 216 m26 = M.cached.v3(
        217     input_1=m22.sorted_data,
        218     input_2=m19.data,
    
    <ipython-input-7-9f2363dc1826> in m26_run_bigquant_run(input_1, input_2, input_3)
          6 def m26_run_bigquant_run(input_1, input_2, input_3):
          7     # 示例代码如下。在这里编写您的代码
    ----> 8     pred_label = input_1.read_pickle()
          9     df = input_2.read_df()
         10     df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
    
    UnpicklingError: invalid load key, 'H'.