{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-8150:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"-274:instruments","from_node_id":"-266:data"},{"to_node_id":"-332:instruments","from_node_id":"-266:data"},{"to_node_id":"-305:data1","from_node_id":"-274:data"},{"to_node_id":"-293:features","from_node_id":"-284:data"},{"to_node_id":"-332:features","from_node_id":"-284:data"},{"to_node_id":"-339:features","from_node_id":"-284:data"},{"to_node_id":"-348:features","from_node_id":"-284:data"},{"to_node_id":"-355:features","from_node_id":"-284:data"},{"to_node_id":"-313:model","from_node_id":"-293:model"},{"to_node_id":"-325:input_data","from_node_id":"-305:data"},{"to_node_id":"-8150:input_2","from_node_id":"-313:predictions"},{"to_node_id":"-348:instruments","from_node_id":"-317:data"},{"to_node_id":"-293:training_ds","from_node_id":"-325:data"},{"to_node_id":"-313:data","from_node_id":"-328:data"},{"to_node_id":"-339:input_data","from_node_id":"-332:data"},{"to_node_id":"-305:data2","from_node_id":"-339:data"},{"to_node_id":"-355:input_data","from_node_id":"-348:data"},{"to_node_id":"-328:input_data","from_node_id":"-355:data"},{"to_node_id":"-250:options_data","from_node_id":"-8150:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n# print(data.current_dt.strftime('%Y-%m-%d'),buy_instruments)\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-266","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-266"}],"output_ports":[{"name":"data","node_id":"-266"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-274","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-274"}],"output_ports":[{"name":"data","node_id":"-274"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-284","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\nfs_net_profit_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-284"}],"output_ports":[{"name":"data","node_id":"-284"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-293"},{"name":"features","node_id":"-293"},{"name":"test_ds","node_id":"-293"},{"name":"base_model","node_id":"-293"}],"output_ports":[{"name":"model","node_id":"-293"},{"name":"feature_gains","node_id":"-293"},{"name":"m_lazy_run","node_id":"-293"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-305","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-305"},{"name":"data2","node_id":"-305"}],"output_ports":[{"name":"data","node_id":"-305"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-313","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"-313"},{"name":"data","node_id":"-313"}],"output_ports":[{"name":"predictions","node_id":"-313"},{"name":"m_lazy_run","node_id":"-313"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-317","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-317"}],"output_ports":[{"name":"data","node_id":"-317"}],"cacheable":true,"seq_num":21,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"-325","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-325"}],"output_ports":[{"name":"data","node_id":"-325"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-328","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-328"}],"output_ports":[{"name":"data","node_id":"-328"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-332","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-332"},{"name":"features","node_id":"-332"}],"output_ports":[{"name":"data","node_id":"-332"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-339","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-339"},{"name":"features","node_id":"-339"}],"output_ports":[{"name":"data","node_id":"-339"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-348","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-348"},{"name":"features","node_id":"-348"}],"output_ports":[{"name":"data","node_id":"-348"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-355","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-355"},{"name":"features","node_id":"-355"}],"output_ports":[{"name":"data","node_id":"-355"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-8150","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 分别读取两个模型的数据\n df1 = input_1.read().rename(columns={'score':'score1','position':'position1'})\n df2 = input_2.read().rename(columns={'score':'score2','position':'position2'})\n \n #合并重新计算得分\n df = pd.merge(left=df1,right=df2,on=['date','instrument'],how='inner')\n df['score'] = df.score1 + df.score2\n #排序\n df = df.groupby('date').apply(lambda x:x.sort_values('score',ascending=False)).reset_index(drop=True)\n\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-8150"},{"name":"input_2","node_id":"-8150"},{"name":"input_3","node_id":"-8150"}],"output_ports":[{"name":"data_1","node_id":"-8150"},{"name":"data_2","node_id":"-8150"},{"name":"data_3","node_id":"-8150"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='213,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='76,215,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='560,11,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='587,528,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='251,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='777,610,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='745,110,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='339,455,200,200'/><node_position Node='-86' Position='745,429,200,200'/><node_position Node='-215' Position='383,188,200,200'/><node_position Node='-222' Position='387,280,200,200'/><node_position Node='-231' Position='745,247,200,200'/><node_position Node='-238' Position='748,338,200,200'/><node_position Node='-250' Position='1033.885986328125,845.5131225585938,200,200'/><node_position Node='-266' Position='1249.3509521484375,67.4385986328125,200,200'/><node_position Node='-274' Position='1108.3509521484375,186.4385986328125,200,200'/><node_position Node='-284' Position='1611.3509521484375,4.4385986328125,200,200'/><node_position Node='-293' Position='1610.3509521484375,537.4385986328125,200,200'/><node_position Node='-305' Position='1287.3509521484375,378.4385986328125,200,200'/><node_position Node='-313' Position='1676.3509521484375,634.4385986328125,200,200'/><node_position Node='-317' Position='1791.3509521484375,139.4385986328125,200,200'/><node_position Node='-325' Position='1375.3509521484375,459.4385986328125,200,200'/><node_position Node='-328' Position='1786.3509521484375,426.4385986328125,200,200'/><node_position Node='-332' Position='1419.3509521484375,191.4385986328125,200,200'/><node_position Node='-339' Position='1423.3509521484375,283.4385986328125,200,200'/><node_position Node='-348' Position='1786.3509521484375,244.4385986328125,200,200'/><node_position Node='-355' Position='1789.3509521484375,335.4385986328125,200,200'/><node_position Node='-8150' Position='1148.635986328125,720.75439453125,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-03-23 14:24:46.708988] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-23 14:24:46.718865] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:46.720479] INFO: moduleinvoker: instruments.v2 运行完成[0.011511s].
[2022-03-23 14:24:46.728297] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-03-23 14:24:46.738879] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:46.740463] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.012167s].
[2022-03-23 14:24:46.744185] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-23 14:24:46.750547] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:46.751840] INFO: moduleinvoker: input_features.v1 运行完成[0.007655s].
[2022-03-23 14:24:46.763568] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-23 14:24:46.776671] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:46.778155] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.014592s].
[2022-03-23 14:24:46.785593] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-23 14:24:46.794201] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:46.795684] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010093s].
[2022-03-23 14:24:46.803895] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-23 14:24:46.812871] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:46.814365] INFO: moduleinvoker: join.v3 运行完成[0.010471s].
[2022-03-23 14:24:46.823207] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-23 14:24:46.837501] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:46.839053] INFO: moduleinvoker: dropnan.v1 运行完成[0.015848s].
[2022-03-23 14:24:46.846136] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2022-03-23 14:24:46.856675] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:46.938727] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[0.092582s].
[2022-03-23 14:24:46.943466] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-23 14:24:46.950889] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:46.952237] INFO: moduleinvoker: instruments.v2 运行完成[0.008777s].
[2022-03-23 14:24:46.965926] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-23 14:24:46.981803] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:46.983535] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.017616s].
[2022-03-23 14:24:46.990588] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-23 14:24:46.999317] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.000841] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010264s].
[2022-03-23 14:24:47.008794] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-23 14:24:47.015262] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.016620] INFO: moduleinvoker: dropnan.v1 运行完成[0.007826s].
[2022-03-23 14:24:47.023949] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-03-23 14:24:47.037137] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.038850] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.014897s].
[2022-03-23 14:24:47.044016] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-23 14:24:47.050786] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.052162] INFO: moduleinvoker: instruments.v2 运行完成[0.008164s].
[2022-03-23 14:24:47.059532] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-03-23 14:24:47.066617] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.068118] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.008583s].
[2022-03-23 14:24:47.071886] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-23 14:24:47.079850] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.081212] INFO: moduleinvoker: input_features.v1 运行完成[0.009325s].
[2022-03-23 14:24:47.095147] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-23 14:24:47.102241] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.103717] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.00858s].
[2022-03-23 14:24:47.110538] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-23 14:24:47.117222] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.118635] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.008097s].
[2022-03-23 14:24:47.127139] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-23 14:24:47.133886] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.135368] INFO: moduleinvoker: join.v3 运行完成[0.00823s].
[2022-03-23 14:24:47.143118] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-23 14:24:47.152027] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.153781] INFO: moduleinvoker: dropnan.v1 运行完成[0.010664s].
[2022-03-23 14:24:47.161528] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2022-03-23 14:24:47.172010] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.295261] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[0.133722s].
[2022-03-23 14:24:47.300321] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-23 14:24:47.314253] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.315808] INFO: moduleinvoker: instruments.v2 运行完成[0.015516s].
[2022-03-23 14:24:47.334783] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-23 14:24:47.342889] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.344447] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.009685s].
[2022-03-23 14:24:47.351743] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-23 14:24:47.364026] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.365609] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.013867s].
[2022-03-23 14:24:47.375074] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-23 14:24:47.385236] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.386812] INFO: moduleinvoker: dropnan.v1 运行完成[0.011744s].
[2022-03-23 14:24:47.395491] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-03-23 14:24:47.417930] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.419901] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.02441s].
[2022-03-23 14:24:47.432695] INFO: moduleinvoker: cached.v3 开始运行..
[2022-03-23 14:24:47.439213] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.441241] INFO: moduleinvoker: cached.v3 运行完成[0.00856s].
[2022-03-23 14:24:47.493271] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-03-23 14:24:47.498042] INFO: backtest: biglearning backtest:V8.6.2
[2022-03-23 14:24:47.499296] INFO: backtest: product_type:stock by specified
[2022-03-23 14:24:47.593212] INFO: moduleinvoker: cached.v2 开始运行..
[2022-03-23 14:24:47.603269] INFO: moduleinvoker: 命中缓存
[2022-03-23 14:24:47.605172] INFO: moduleinvoker: cached.v2 运行完成[0.011979s].
[2022-03-23 14:24:49.699786] INFO: algo: TradingAlgorithm V1.8.7
[2022-03-23 14:24:50.810100] INFO: algo: trading transform...
[2022-03-23 14:24:53.732143] INFO: algo: handle_splits get splits [dt:2021-05-21 00:00:00+00:00] [asset:Equity(5090 [688060.SHA]), ratio:0.9935547709465027]
[2022-03-23 14:24:53.733707] INFO: Position: position stock handle split[sid:5090, orig_amount:2500, new_amount:2516.0, orig_cost:57.43890568338266, new_cost:57.0687, ratio:0.9935547709465027, last_sale_price:57.03997802734375]
[2022-03-23 14:24:53.734777] INFO: Position: after split: PositionStock(asset:Equity(5090 [688060.SHA]), amount:2516.0, cost_basis:57.0687, last_sale_price:57.40999984741211)
[2022-03-23 14:24:53.735723] INFO: Position: returning cash: 12.4118
[2022-03-23 14:24:54.440250] INFO: algo: handle_splits get splits [dt:2021-05-25 00:00:00+00:00] [asset:Equity(3562 [300342.SZA]), ratio:0.9861623644828796]
[2022-03-23 14:24:54.442194] INFO: Position: position stock handle split[sid:3562, orig_amount:4700, new_amount:4765.0, orig_cost:10.900001206774633, new_cost:10.7492, ratio:0.9861623644828796, last_sale_price:10.690001487731934]
[2022-03-23 14:24:54.443950] INFO: Position: after split: PositionStock(asset:Equity(3562 [300342.SZA]), amount:4765.0, cost_basis:10.7492, last_sale_price:10.840001106262207)
[2022-03-23 14:24:54.445344] INFO: Position: returning cash: 10.1499
[2022-03-23 14:24:54.542719] INFO: algo: handle_splits get splits [dt:2021-05-28 00:00:00+00:00] [asset:Equity(3652 [300552.SZA]), ratio:0.981345534324646]
[2022-03-23 14:24:54.544159] INFO: algo: handle_splits get splits [dt:2021-05-28 00:00:00+00:00] [asset:Equity(5383 [300462.SZA]), ratio:0.9876540899276733]
[2022-03-23 14:24:54.545368] INFO: Position: position stock handle split[sid:3652, orig_amount:2900, new_amount:2955.0, orig_cost:32.110004419775976, new_cost:31.511, ratio:0.981345534324646, last_sale_price:32.09000015258789]
[2022-03-23 14:24:54.546661] INFO: Position: after split: PositionStock(asset:Equity(3652 [300552.SZA]), amount:2955.0, cost_basis:31.511, last_sale_price:32.70000076293945)
[2022-03-23 14:24:54.547708] INFO: Position: returning cash: 4.053
[2022-03-23 14:24:54.548729] INFO: Position: position stock handle split[sid:5383, orig_amount:12700, new_amount:12858.0, orig_cost:11.576145534584922, new_cost:11.4332, ratio:0.9876540899276733, last_sale_price:11.999998092651367]
[2022-03-23 14:24:54.549783] INFO: Position: after split: PositionStock(asset:Equity(5383 [300462.SZA]), amount:12858.0, cost_basis:11.4332, last_sale_price:12.15000057220459)
[2022-03-23 14:24:54.550883] INFO: Position: returning cash: 9.0361
[2022-03-23 14:24:54.732630] INFO: algo: handle_splits get splits [dt:2021-06-08 00:00:00+00:00] [asset:Equity(4979 [002730.SZA]), ratio:0.9940072894096375]
[2022-03-23 14:24:55.022341] INFO: algo: handle_splits get splits [dt:2021-06-24 00:00:00+00:00] [asset:Equity(1975 [300165.SZA]), ratio:0.9979838132858276]
[2022-03-23 14:24:55.023802] INFO: Position: position stock handle split[sid:1975, orig_amount:12700, new_amount:12725.0, orig_cost:5.040000746643777, new_cost:5.0298, ratio:0.9979838132858276, last_sale_price:4.950000286102295]
[2022-03-23 14:24:55.024887] INFO: Position: after split: PositionStock(asset:Equity(1975 [300165.SZA]), amount:12725.0, cost_basis:5.0298, last_sale_price:4.960000514984131)
[2022-03-23 14:24:55.026023] INFO: Position: returning cash: 3.2536
[2022-03-23 14:24:55.105682] INFO: algo: handle_splits get splits [dt:2021-06-29 00:00:00+00:00] [asset:Equity(830 [002981.SZA]), ratio:0.9980751872062683]
[2022-03-23 14:24:55.107225] INFO: Position: position stock handle split[sid:830, orig_amount:5200, new_amount:5210.0, orig_cost:25.890069343720512, new_cost:25.8402, ratio:0.9980751872062683, last_sale_price:25.929994583129883]
[2022-03-23 14:24:55.108424] INFO: Position: after split: PositionStock(asset:Equity(830 [002981.SZA]), amount:5210.0, cost_basis:25.8402, last_sale_price:25.98000144958496)
[2022-03-23 14:24:55.109503] INFO: Position: returning cash: 0.7346
[2022-03-23 14:24:59.394670] INFO: Performance: Simulated 243 trading days out of 243.
[2022-03-23 14:24:59.396260] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2022-03-23 14:24:59.397404] INFO: Performance: last close: 2021-12-31 15:00:00+00:00
[2022-03-23 14:25:02.245034] INFO: moduleinvoker: backtest.v8 运行完成[14.75174s].
[2022-03-23 14:25:02.246893] INFO: moduleinvoker: trade.v4 运行完成[14.799393s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-ed880febe9dd42bc8cc5d5667e2dc3b4"}/bigcharts-data-end
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-95a147ad0ae34325a3753219ca661ebd"}/bigcharts-data-end
- 收益率66.25%
- 年化收益率69.41%
- 基准收益率-5.2%
- 阿尔法0.73
- 贝塔0.28
- 夏普比率2.13
- 胜率0.51
- 盈亏比1.5
- 收益波动率24.86%
- 信息比率0.14
- 最大回撤15.9%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-d98f2ab1a2474234ba8d7c8bfc87bac9"}/bigcharts-data-end