交易信号

在金融领域,"交易信号"是投资决策中的关键要素,它是基于各种分析工具和方法得出的,标志着潜在买入或卖出时机的指示。这些信号可能来源于技术分析中的图表模式、指标交叉,也可能基于基本面分析中的财务数据变动、新闻事件等。对于投资者而言,准确地识别并解读交易信号对于制定有效策略、优化风险回报比至关重要。然而,交易信号并非绝对,它需要在市场动态和投资者个人风险承受能力的背景下综合考虑。

【平台使用】回测正常,提交模拟后不能产生交易信号

日频交易,每日轮仓

https://bigquant.com/codesharev3/7f53a613-ea73-41da-aca1-01e4c4900ba1

\

更新时间:2025-01-17 10:25

快速入门

快速开始第一个策略

新建策略

打开 编写策略 > 点击左侧 + AIStudio 新建策略 > 点击模版 可视化线性策略 > 回车确认

新建可视化线性策略

运行回测

点击右上角 全部运行,运行回测,查看回测绩效

![](/wiki/api/attachme

更新时间:2025-01-16 10:32

机器学习量化投资实战指南

本文14323字,阅读约28分钟

导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。

文章概览:

1.人工智能量化投资概述

2.人工智能技术简介

3.机器学习在量化投资中应用的具体方法解析

AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅

更新时间:2025-01-09 10:19

【平台使用】回测正常,但是模拟和实盘不能产生交易信号

回测正常,提交模拟及实盘不能产生交易信号,试过100+次了都一样

![](/wiki/api/attachments.r

更新时间:2025-01-06 01:55

【平台使用】回测正常,但是模拟和实盘不能产生交易信号

[10770 rows x 19 columns]

171

[2025-01-04 20:39:28] [info ] c_initialize() first_trading_date:2025-01-03, trading_day_index:0

172

[2025-01-04 20:39:28] [info ] c_initialize() positions len:0,market_value:0.0,margin:0.0

173

[2025-01-04 20:39:28] [info ] result json_extension:{}

1

更新时间:2025-01-06 01:53

机器学习在量化投资中的趋势和应用

来源:SSRN 作者:Sophie Emerson, Ruairi Kennedy, Luke O’Shea, and John O’Brien

机器学习是人工智能的一个子领域,它使用统计技术为计算机模型提供从数据集学习的能力,允许模型在没有显示编程的情况下执行特定任务。近年来,机器学习技术激增,人们对其在金融领域的应用也越来越感兴趣。在投资管理中,已被应用于新闻的情绪分析、趋势分析、投资组合优化、风险建模等。那么,机器学习在量化投资中有哪些潜在应用呢?

1.常见的机器学习算法

机器学习算法主要有三种:监督学习、无监督学习和强化学习。监督学习是在已知输入和输出的情况下训练出一个模型,将

更新时间:2024-12-11 08:16

【代码报错】分钟级别的回测代码如何编写?

帮忙写个股票日内冲高回落和止损的示例

我很想尝试新推出的分钟级别的回测,但是怎么写都报错,希望能给我一个策略例子,当持仓股票盘中冲高5%回落1个点卖出以及亏损3%卖出就行,我就想看看这个分钟回测是怎么运作的,日级别出信号,回测时候如何安装约定的分钟条件进行细化买卖的,非常感谢,写了好久也写不出来。

更新时间:2024-10-10 03:22

多因子选股策略-股票日频_new

策略介绍

多因子选股策略是一种简单而又广泛使用的技术分析工具,主要用于识别市场趋势的变化和生成交易信号。

主要用到以下几个因子:

pb
rank(pb)
rank(roe_avg_lf)
rank(roe_avg_ttm) 
rank(net_profit_qoq_lf)
rank(roe_avg_lf)+rank(net_profit_qoq_lf)-rank(pb) AS my_rank
roe_avg_lf
roe_avg_ttm
close
adjust_factor

策略流程

  1. 筛选条件:

更新时间:2024-06-13 06:32

双均线股票策略-股票日频_new

策略介绍

双均线策略是一种简单而又广泛使用的技术分析工具,主要用于识别市场趋势的变化和生成交易信号。这种策略涉及两条移动平均线——一条短期(快速)和一条长期(慢速)——并通过观察这两条线的交叉点来决定买入或卖出的时机。

策略流程

  1. 筛选条件:将5日平均收盘价作为短线,50日平均收盘价作为长线;短线上穿长线买入,长线下穿短线卖出
  2. 策略回测:开盘买入,收盘卖出,回测时间为2017-11-24至2024-11-24

策略实现

输入特征模块

  • 将5日均线作为短线,m_avg(close, 5) AS _mean_short;50日均线作为长线,`

更新时间:2024-06-13 06:14

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|

更新时间:2024-06-11 03:20

如何将回测设置为T+2开盘买入,T+3尾盘卖出?

问题

如何将回测模块设置成T+2开盘买入,T+3尾盘卖出(目前我们支持的是T+1买入)

视频

https://www.bilibili.com/video/BV1bT411u71x?share_source=copy_web

策略源码

[https://bigquant.com/experimentshare/157e67091c1b4534b7ea1f0a4255a38b](https://bigquant.com/experi

更新时间:2024-06-07 10:55

股票双均线策略

{{membership}}

https://bigquant.com/codeshare/176e62e4-b61d-45f0-a960-3dbb48b50aba

\

更新时间:2024-06-07 10:55

序列窗口滚动

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

59th Meetup

本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb

因子挖掘

如何利用市场信息?

利用市场信息进行量化投资主要涉及以下步骤:

  1. 数据收集:首先,需要收集和整理市场数据,包括股票价格、交易量、基本面数据、新闻、宏观经济数据等。这些信息可以从各种数据供应商或公开数据源获取。
  2. 数据预处理:对收集到的数据进行清洗和预处理,处理缺失值、异常值、重复值等,保证数据的准确性和完整性。
  3. 特征工程:根据投资策略和模型需求,进行特征工程,提取有价值的特征和信号。
  4. 模型构建:选择合适的模型(如回归模型、机器学习模型、深度学习模型

更新时间:2024-06-07 10:55

上涨和下跌预测的stockranker模型组合(卖出)

https://bigquant.com/experimentshare/962ef5e58f1e41acbeecaa0161fc56c6

\

更新时间:2024-06-07 10:55

日线策略信号进行日内择时

【旧版使用说明】此文档为旧版本,相关文档可参考:

https://bigquant.com/wiki/doc/126-KkS3pYVIAH

20210624 Meetup 策略案例

https://bigquant.com/experimentshare/f235e9ce26dc42b9ae9fb57ca6574bf1

\

更新时间:2024-06-07 10:55

构建日历周线级别因子

https://bigquant.com/experimentshare/f5061810f6e34b71ad59641c2f54e290

\

更新时间:2024-06-07 10:55

构建一个明日涨跌停状态因子

策略案例


https://bigquant.com/experimentshare/6d0fcf61776548b5957fe9c90204c56f

\

更新时间:2024-06-07 10:55

回测引擎常用功能示例

{{membership}}

https://bigquant.com/codeshare/ccb0fdad-c4da-424e-ace1-dd57ace94cec

\

更新时间:2024-06-07 10:55

海龟策略自定义运行

\

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数

更新时间:2024-06-07 10:55

如何在可视化模块上用bigtrader?

问题

如何在可视化模块上用bigtrader?

视频

8月19日Meetup模板:以双均线为例

https://www.bilibili.com/video/BV1S44y1y7dc?p=4

策略源码

[https://bigquant.com/experimentshare/b2f44f26626a4d798d2dfecdb8e75d64](https://bigquant.com/experimentshare/b2f44f26626a4d798d2dfecd

更新时间:2024-06-07 10:55

如何在14:50读取数据并给出当下信号

问题

可不可以把每天最后一根K线定义在14:50,这样就可以当天出信号当天下单,不用等到第二天开盘。

视频

https://www.bilibili.com/video/BV1zZ4y1t7VX/

策略源码


[https://bigquant.com/experimentshare/ccc914b3e10b4d18bb87bc2facafe51f](https://bigquant.com/experimentshare/ccc914b3e10b4d18bb87bc2

更新时间:2024-06-07 10:55

一阳穿多线策略的因子描述-滚动训练

【此文档为旧版】 相关新版文档参考:

https://bigquant.com/wiki/doc/ai-rq8QOC2fDb

策略案例

https://bigquant.com/experimentshare/16571b942a8a4a92a4914c15f65d0883

\

更新时间:2024-06-07 10:55

交易逻辑案例_ST和退市股处理

9月24日Meetup 模板案例:

策略案例

https://bigquant.com/experimentshare/2ddd6666ca164cf6b1f79b4a85cf8dae

\

更新时间:2024-06-07 10:55

均线突破策略-期货分钟

https://bigquant.com/experimentshare/ce74bc7af5cd4206bcb1b6334235e2f8

\

更新时间:2024-06-06 10:40

分页第1页第2页第3页第4页
{link}