本文挑选了著名的风险结构模型进行介绍,具体的细节并没有深入展开,旨在抛砖引玉,了解Barra对于风险结构模型的思维方式和理念。
相似的资产会有相似的回报,这是多因子模型的基本假设。由于某些特定的原因(因子),资产会表现的十分类似,例如价量变化、行业、规模或者利率变化。多因子模型就是为了发掘这些因子,并且确定收益率随因子变化的敏感程度。通常来说,多因子模型包括了宏观因子模型、基本面因子模型和统计因子模型。这几种模型在分析不同的大类资产风险收益的时候也有不同的效果。
单个资产的多因子模型可以表示成:
![{w:100}
更新时间:2024-03-03 10:49
随着陆股通的推进,内地投资者对港股的关注度也越来越高。在本报告中,我们对港股 Barra 模型进行了介绍,并对数据结果及应用进 行展示。
数据是分析的基础。我们在本地搭建了港股基础信息、行情序列、 交易数据、恒生行业分类、股票估值数据、资产负债、利润和现金 流量等数据表。港股数据质量相对于 A 股存在一定不足,还需进一 步完善。
对于行业分类,我们使用的是恒生一级行业分类:公用事业、原材 料业、地产建筑业、工业、消费品制造业、消费者服务业、电讯业、 综合企业、能源业、资讯科技业和金融业;风格包括市值、贝塔、 动量、波动率、非线性市值、BP、流动性、盈利、成长和杠杆等十 个因子。
更新时间:2023-06-01 14:28
2017 年 A 股市场风格急剧转变,大盘股异军突起,小盘 股风光不再。一半是海水,一半是火焰,市场的结构性牛 市让投资者几家欢喜几家愁。
方正金工通过构建自己的多因子风险-收益归因模型,全 面窥探市场风格,及时捕捉市场风格变化,力争成为投资 者风险管理的一大利器。
多因子模型可以将对 N 只股票的收益-风险分析转换为对 K 个因子的收益-风险分析,简化分析工作量的同时提高 了预测准确度。 在模型构建中,需对模型的多重共线性、系数显著性、因 子标准化方法及残差的异方差性进行
更新时间:2023-06-01 14:28
风险模型主要实现三个功能:估算协方差矩阵、控制风险暴露和组合绩效归因分析。
后两者需要用到结构化的因子风险模型(例如BARRA、Axioma)
估算协方差矩阵可以用结构化因子模型,也可以采用纯统计方法。
结构化因子模型的最大好处在于降维,既可以降低参数估计误差,也可以降低协方差相关计算的复杂度,大幅提升组合优化速度;但缺点是模型会存在设定偏误,需要维护更新风险因子库。统计模型没有设定偏误,只需要用到股票收益率数据,计算效率很高,但输入到组合优化时,无法通过因子模型降维的方式实现优化提速。
本报告提高了一种方法可以兼顾统计模型的高效便捷和
更新时间:2023-06-01 14:28
在本报告中,我们对MSCI新一代A股风险模型(CNE6)进行了介绍和结果展示。
CNE6中,包括48个描述变量、20个基础因子和9个风格因子。为得到风格因子,需进行两次加权。就种类来说,CNE6增加了质量、情绪和分红风格,将非线性市值与市值进行了合并。对于基础因子,增加了盈余波动、投资质量、长期反转、行业动量等;对于描述变量,例如流动性,增加了ATR指标。相较而言,CNE6中增加了市场关注度日益提高的一些因子,同时根据实际对一些因子进行了合并处理。
基于因子定义,我们计算了BarraDescriptor(描述变量)、Barra_Basic(基础因子)和Barra_Style(风
更新时间:2023-06-01 14:28
具有规模和流动性筛选的更具代表性的模型估计范围ESTU
– 长期模型 (使用较慢的风格因子) : Responsive, Stable
– 交易版本 (同时有较慢和较快的风格因子) : Trading
– 化工行业进行拆分,分为商品化工和非商品化工
– 将工业综合与贸易和分销两个
– 9个新增SES因子:
慢速: Long-term reversal, Profitability, Earnings Quality, Dividend Yield, Investm
更新时间:2023-06-01 14:28
BARRA makes no warranty, express or implied, regarding the Global Equity Risk Model or any results to be obtained from the use of the Global Equity Risk Model. BARRA EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, REGARDING THE GLOBAL EQUITY RISK MODEL, INCLUDING BUT NOT LIMITED TO ALL
更新时间:2023-06-01 14:28
如同立体世界可以用三维坐标来丈量,纯因子组合的提出有利于将投资者从风格因子的协同变化中解放出来,形成单一的、纯粹的、正交的资产组合工具。
传统的 Smart Beta 指数在风格因子上的暴露并不纯粹,其在目标因子上进行主动正向暴露的同时,会给其他因子带来正向或反向暴露,如何构建纯粹的风格因子成为本报告探讨的主要问题。
完全复制法:能够保证组合的收益即为纯因子的收益,但无法约束组合的事前风险最优复制法:根据带约束的均值-方差优化求解,可以控制组合的事前风险,但可能出现一定程度的跟踪误差两种方法均存在做
更新时间:2023-06-01 14:28
对于私募指数增强产品来说,指数本身的风险是一种被动的且必需的暴露,因此风险因子对指数的主动暴露成为了一种调节工具,一方面对应着选股模型的能力特点,一方面也掺杂着私募机构的主观判断。本文针对私募指数增强产品的策略流程,设计了一套相应的风险因子暴露分析方法,在数据匮乏的情况下取得了良好的效果,打开了从风险暴露的角度构造因子对私募指数增强产品进行分析的道路。
在敞口暴露因子的分析过程中,本文发现总体上大的风格敞口暴露和小的行业敞口暴露会导致指数增强产品较差的收益表现。这说明在带有主观色彩的风格因子控制中,过度放大敞口会侵蚀产品的净值;在相对统一的行业因子控制中,过严的敞口约束会削弱收
更新时间:2023-06-01 14:28
多因子选股作为量化投资研究领域的经典模型,在海内外各类投资机构均受到广泛研究和实践应用。 在多因子模型中,决定策略收益稳健性的关键步骤正在于股票组合的权重配置。因此,从量化对冲策略追求收益稳定性的角度而言,组合权重优化对多因子模型起着至关重要的作用。
本篇报告有别于传统的多因子研究,我们并未将重点放在阿尔法因子的挖掘上,而是通过对股票组合的权重优化计算,找到了在市值中性、行业中性、风格因子中性约束下的最优投资组合,以及验证得到的组合权重是否满足了约束条件。
结构化多因子风险模型首先对收益率进行简单的线性分解,分解方程中包含四个组成部分:股票收益率、因子暴露、因子收益率和特质因
更新时间:2022-11-27 16:26
本贴主要分享东方证券金工部在Barra多因子结构风险模型上的研究思路、方法和成果,并持续更新…
下载链接:【https://pan.baidu.com/s/1ozOhYXLDTXl1zPE5jx9ytA】
Barra多因子结构风险模型投资流程入下:
![{w:100}](/
更新时间:2022-11-02 07:09
多因子模型风险预测:百尺竿头,更进一步
投资是一把双刃剑,投资者既是收益的追逐者,同时也是风险的承担者。一个好的多因子模型框架通常包含收益模型、风险模型、绩效归因三个模块,本报告聚焦多因子模型的第二大功能—风险预测。
多因子风险矩阵估计方法
采用多因子结构化风险矩阵估计时,为保证样本内外估计的一致性、增加估计结果的准确性,需要对因子协方差矩阵和特异风险矩阵的估计作如下调整:
·因子协方差矩阵估计:Newey-West 自相关调整、特征值调整、波动率偏误调整
·特异风险矩阵估计:Newey-West 自相关调整、结构化模型调整、贝叶斯收缩调整、波动率
更新时间:2022-08-31 02:39
多因子模型风险预测:百尺竿头,更进一步投资是一把双刃剑,投资者既是收益的追逐者,同时也是风险的承担者。一个好的多因子模型框架通常包含收益模型、风险模型、绩效归因三个模块,本报告聚焦多因子模型的第二大功能—风险预测。
多因子风险矩阵估计方法采用多因子结构化风险矩阵估计时,为保证样本内外估计的一致性、增加估计结果的准确性,需要对因子协方差矩阵和特异风险矩阵的估计作如下调整:
因子协方差矩阵估计:Newey-West自相关调整、特征值调整、波动率偏误调整特异风险矩阵估计:Newey-West自相关调整、结构化模型调整、贝叶斯收缩调整、波动率偏误调整多因子风险预测模
更新时间:2022-08-31 02:39
市场风格急剧转变,大盘蓝筹异军突起2017年A股市场风格急剧转变,大盘股异军突起,小盘股风光不再。一半是海水,一半是火焰,市场的结构性牛市让投资者几家欢喜几家愁。方正金工通过构建自己的多因子风险-收益归因模型,全面窥探市场风格,及时捕捉市场风格变化,力争成为投资者风险管理的一大利器。
Barra风险-收益归因模型多因子模型可以将对N只股票的收益-风险分析转换为对K个因子的收益-风险分析,简化分析工作量的同时提高了预测准确度。在模型构建中,需对模型的多重共线性、系数显著性、因子标准化方法及残差的异方差性进行考虑。
方正金工多因子收益归因模型方正金工对市场主流风格因子
更新时间:2022-08-31 02:39
风险模型主要实现三个功能:估算协方差矩阵、控制风险暴露和组合绩效归因分析。后两者需要用到结构化的因子风险模型(例如BARRA、Axioma);估算协方差矩阵可以用结构化因子模型,也可以采用纯统计方法
结构化因子模型的最大好处在于降维,既可以降低参数估计误差,也可以降低协方差相关计算的复杂度,大幅提升组合优化速度;但缺点是模型会存在设定偏误,需要维护更新风险因子库。统计模型没有设定偏误,只需要用到股票收益率数据,计算效率很高,但输入到组合优化时,无法通过因子模型降维的方式实现优化提速。
本报告提高了一种方法可以兼顾统计模型的高效便捷和因子模型的计算提速。首先用压缩估计方法(报告用的是线性压缩
更新时间:2021-11-22 08:05