【旧版模块】,该文档为旧版。新模板详见:
https://bigquant.com/wiki/doc/102-ai-hXNHGsyWzS
在阅读了学院关于可视化模板教程后,相信你已经掌握了平台上的模块使用方法。本文将以XGBoost模型为例,介绍回归、排序、分类的不同之处。在文末,你可以克隆该算法自行研究、学习
首先我们明确一下算法在机器学习中的地位。一般来说,机器学习有三个要素:数据、算法和模型。
更新时间:2024-06-11 02:53
排序算法的预测值score分数是什么意思?不同模型的产生的预测score可不可以相互比较?比如两个模型一个模型分数最大的score比另一个的高,是否那个较高score对应的股票上涨的幅度可能性较大?
\
https://www.bilibili.com/video/BV1CB4y1u725?share_source=copy_web
\
更新时间:2024-06-07 10:55
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 01:59
【旧版说明】此文档已过期,请参考最新版本下的相关使用文档:
https://bigquant.com/wiki/doc/102a-ai-orWpvrhNoe
在介绍AI排序算法之前我们先介绍另外一个术语:特征工程
特征工程是使用专业背景知识和技巧来处理数据,使得特征能在机器学习算法上发挥更好作用的工程实践。这样解释可能并不直观。举例说明,当我们选择用指标来评估一个人身体健康程度时,我们一般联想到的是身高和体重指标,这是两个不同的维度对数据进行记录,如果我们
更新时间:2024-05-15 07:22
一般排序算法中个,需要设置哪些样本和哪些样本是在同一个group里,这样才能在每个group内做排序训练。对于股票的话,我想训练的时候应该是按照交易日期来做group的。
不过在stockRanker里,好像只有常规的boosting tree的超参,并没有看到设置group的地方(如果有验证集,还需要对验证集设置group),请问这里有什么问题吗?
更新时间:2023-10-09 07:08
一般排序算法中个,需要设置哪些样本和哪些样本是在同一个group里,这样才能在每个group内做排序训练。对于股票的话,我想训练的时候应该是按照交易日期来做group的。
不过在stockRanker里,好像只有常规的boosting tree的超参,并没有看到设置group的地方(如果有验证集,还需要对验证集设置group),请问这里有什么问题吗?
默认是按date,也就是交易日期来做
更新时间:2023-06-01 02:13