AI量化交易

AI量化交易,即利用先进的人工智能技术对金融市场进行深度学习和模式识别,进而制定并执行交易策略的一种新型交易方式。这种方式强调数据驱动,通过实时分析海量金融数据,寻找市场中的非随机性规律和交易机会。AI量化交易的核心优势在于其能够处理复杂的、非线性的市场模式,并以超人的速度做出决策和执行,有效规避人类情感和主观偏见的影响,使得交易更具客观性和一致性。随着AI技术的发展和金融市场数据量的增长,AI量化交易有望成为未来金融交易的重要发展方向,为投资者提供更加精准、高效的交易方式。

AI量化策略快速理解

导语

在上一篇文章中,大家对新建一个AI可视化模板策略有了初步的认识,但看到策略中众多的模块与看似复杂的连线心中不免存在疑惑,没关系,本篇文章中,我们就来为大家完整介绍一个AI量化策略的组成结构以及涉及的基本概念,希望可以帮助大家对AI量化策略建立一个全面初步的认识。


基本概念

概念介绍

在认识一个人工智能量化投资策略之前,我们首先来了解几个基本概念:人工智能量化投资机器学习,大家可以通过快速浏览下面这两篇文章,对前两个概念进行初步了解。

  • **[什么是人工智能?](https://bigquant.com/wiki/

更新时间:2024-12-13 03:43

量化投资的基本概念

什么是量化投资?

量化投资是指通过数量化模型建立科学投资体系,以获取稳定收益。 在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。在国内,量化投资不再是一个陌生的词汇,近几年得到了迅猛的发展。

提起量化投资,就不得不提量化投资的标杆——华尔街传奇人物詹姆斯·西蒙斯(James Simons)。

价值投资趋势投资(技术分析)是引领过去一个世纪的投资方法,随着计算机技术的发展,已有的投资方法和计算机技术相融合,产生了量化投资。

量化投资和传统投资的区别

简单来说,量化投资与传统投资方法之间的关系比较类

更新时间:2024-12-11 08:01

AI量化投资训练营-基础班

更新

本文内容已经过期,待更新,请查看如下最新内容:

导语

AI量化是未来趋势,金融机构对量化方向的人才求贤若渴,存在大量的人才缺失。对于金融知识一片空白的小白来说

更新时间:2024-09-28 13:43

AI量化技术

AI量化领域结合了人工智能(AI)、机器学习(ML)以及量化金融的技术和方法。这一领域的目标是使用算法和计算模型来分析大量金融数据,从而做出投资决策或提高交易效率。

一些在AI量化领域重要技术和方法,以及在金融领域的应用:

  1. 机器学习算法:机器学习算法是AI量化领域的核心。它们包括监督学习、非监督学习和强化学习。
    • 监督学习,如支持向量机(SVM)、神经网络、决策树等,用于预测或分类任务,如股价预测、信用评分。
    • 非监督学习,如聚类、主成分分析(PCA)等,用于发现数据中的模式和关系,如市场细分、异常检测。
    • 强化学习,如Q学习

更新时间:2024-09-05 03:12

AI量化Meetup

因子篇

因子构建

另类标签推荐

追涨策略的关键因子如何选择

基于财务数据构建策略

结合欧奈尔的RPS指标开发策略

OneHot编码作为特征因子输入模型

更新时间:2024-07-08 07:54

AI量化投资训练营

更新时间:2024-06-12 06:05

AI量化进阶训练营-进阶班

\

量化交易规模突破万亿大关

国内量化交易规模快速发展,今年量化基金已突破万亿大关,并且量化私募的整体业绩十分亮眼,过去5年一线量化私募的超额收益基本在20%~30%,量化交易的占比已达到20%~30%(BigQuant开第一期培训的时候是个位数),可见量化的发展迅猛,未来也会以更快地速度占领交易市场。无论是自己投资需要还是进入量化领域学习量化都是不错的选择。

关于AI量化投资训练营

BigQuant今年的培训比往年来的晚一些,在大家的日益催促下2021AI量第四期化投资训练营正式开班了!今年的课程中新增了DeepAlpha、高频因子、T0策略、transformer和图神

更新时间:2024-06-12 06:05

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|

更新时间:2024-06-11 03:20

AI量化交易指标

AI量化指标的选择和排序取决于特定的投资策略、市场条件和数据可用性。

以下是30个常见的AI量化指标,按照一般在量化分析中的重要性排序:

  1. 收益率(Return)
  2. 夏普比率(Sharpe Ratio)
  3. [波动率](https://bigquant.com/wiki/doc/5roi5y

更新时间:2024-06-11 02:28

2024-AI量化Meetup

更新时间:2024-06-07 10:55

2023-AI量化Meetup

\

更新时间:2024-06-07 10:55

AI量化训练营双11活动

AI量化训练营双11活动

一、单次课程

1.初阶:现价999,立减200得799,Plus会员立减400得599

2.进阶:现价1399,立减200得1199,Plus会员立减400得999

二、初阶+进阶

现价1998,立减200得1798,Plus会员立减400得1598 训练营地址:https://bigquant.com/quantcamp

三、2022AI量化策略会 购买初阶+进阶课程,可获赠价值1398的AI量化策略会,12月24日直播即将开启! 策略会地址:https://bigquant.com/quantcamp/2022

四、优惠券领取 优惠

更新时间:2024-06-07 10:55

【优秀开发者分享】三步管理AI量化策略

问题

如何对AI量化策略进行管理?

视频

https://www.bilibili.com/video/BV1zi4y197sj?share_source=copy_web

策略源码

如何对AI量化策略进行管理?三步走

更新时间:2024-06-07 10:55

2020-AI量化Meetup导览

导语

BigQuant宽客学院伴随着平台的更新,学习和探讨的内容也日益增加。大家对机器学习、深度学习的策略研究越来越深入,新的想法也层出不穷,为了满足大家对探索的渴望,因此我们准备了定期的“BigQuant AI量化专家MeetUp”,本周四正式启动了!BigQuant学院院长、AI量化专家现身BigQuant B站直播间,在线交流、答疑,解决您在AI量化和BigQuant遇到的所有问题!

Meetup内容

以导师答疑为主,解决大家在日常开发中遇到的问题:

  1. 策略开发新思路探讨
  2. 策略开发中遇到的疑惑
  3. BigQuant平台使用

**Meet

更新时间:2024-06-07 10:55

高质量AI量化策略

【此文档为旧版策略】具体可参考新版文档:

https://bigquant.com/wiki/doc/103-ai-LpsqDhu8mG

https://bigquant.com/experimentshare/dd9cff01459a41f9be40d7e660164795

\

更新时间:2024-06-07 10:55

2021-AI量化Meetup导览

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}导语

2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me

更新时间:2024-06-07 10:55

2022-AI量化Meetup导览

\

更新时间:2024-06-07 10:55

AI量化大赛获奖策略分享《龙头战法实盘-中证150增强》

视频

https://www.bilibili.com/video/BV11S4y197md?share_source=copy_web

策略源码

龙头战法实盘+AI-量化大赛NO.3-中证150增强[策略分享]

更新时间:2024-06-07 10:55

AI量化策略训练时间如何选择

问题

AI量化策略训练时间如何选择

视频

https://www.bilibili.com/video/BV1br4y1B7na/

策略源码

文档及源码:AI量化策略训练时间如何选择

更新时间:2024-06-07 10:55

AI量化交易常用指标及计算方式

AI量化重要指标包括:

ADX(平均方向性指数);布林带(Bollinger Bands,简称BBANDS);MACD(Moving Average Convergence Divergence);

CCI(商品渠道指数);阿隆上行(Aroon Up)和阿隆下行(Aroon Down);ATR指标;指数移动平均值;MFI;MOM;

OBV;RSI;SAR;简单移动平均值;STOCH (KDJ) ;TRIX;WILLR;加权移动平均值;

AI量化选股利用AI的强大数据处理和分析能力,旨在寻找那些被市场低估但具有增长潜力的投资机会。

[BigQuant](https://bigquant

更新时间:2024-06-07 10:48

AI量化交易常识

分享一些量化交易相关的常识信息。

五因子模型公式及应用

五因子模型是哪五个因子

**[多因子选股模型及优缺点](https://bigquant.com/wiki/doc/5asa5zug5a2q6ycj6ikh5qih5z6l5zcn6kn6ke

更新时间:2024-06-07 10:48

AI量化交易是什么意思

**概念定义:**一种使用高级数学模型、统计分析和计算机算法进行交易决策的方法。

**应用范围:**一般包括股票、期货、外汇和衍生品等金融市场;

**主要原理:**依赖于金融市场中的价格、交易量、经济指标等大量历史和实时数据,用以识别市场趋势、估值、波动性等关键因素;使用复杂的数学(包括统计学、概率论、机器学)模型来分析数据和预测市场行为,并通过计算机算法预设的规则和模型自动执行交易。(文末含量化核心资源

核心工具

数据分析

历史数据分析:通过分析历史价格、成交量等数据来预测市场趋势。

实时市场数据:收集实时交易数据,对市场

更新时间:2024-06-07 10:48

AI量化攻略:交易经验or因子分析

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 06:26

如何结合欧奈尔的RPS指标,开发AI量化策略?

若想在AIStudio3.0.0种复现这个策略, 请空降:

https://bigquant.com/wiki/doc/rpsai-lgPnmWzLkq

问题

如何结合欧奈尔的RPS指标,开发AI量化策略?

讲解


{w:100}{w:100}{w:100}{w:100}{w:100}


1988年,欧奈尔将他的投资

更新时间:2024-05-17 01:13

探索:AI量化策略训练时间如何选择?

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


预计算因子表[数据平台]

https://bigquant.com/data/datasources/cn_stock_prefactors

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

[

更新时间:2024-05-16 07:09

分页第1页第2页
{link}