复制链接
克隆策略

探究 训练时间对 模型收益影响?

训练集长时间 (5-10年) VS 训练集 短时间 (6个月-1,2年) 会对模型的数据造成怎么样的影响?

长时间: 从05年开始往后 到21年 增加数据 首先是标注的训练数据发生了改变, 其次是 模型中 因子的特征权重发生改变 再然后是 ndcg的评价也发生了改变 最后 整个模型的预测结果也会产生偏差

简单评价:长时间训练 搜索出来的回测结果  回测时间更长,得出结论更稳定  也更容易 过拟合


短时间 从21年开始往前 到20年 增加数据 变化同上 但数据量更少,有可能 NDCG反而提高 收益也更高

简单评价:短时间训练 搜索出来的回测结果  在未来回测更陡峭 收益有可能更高  也更容易欠拟合




探究 有没有 一些较好的训练时间作为参考?

05年-16年,13-19年,10-20年都可以试试。

探究 是策略思路重要还是因子重要?

1.好的策略设计思路,能节省你挖掘因子的时间,同时,聚焦某一个领域去钻研,

也更容易找到适配的组合,挖掘出好的因子模型。 (比如追涨的逻辑,就要配合动量因子,做追龙头的逻辑,就要配合波动率因子和收益率因子)

2.因子和策略的表现跟市场是强相关的。

有的年份 小市值股票厉害,风格暴露在小市值上的模型,超额收益更多,有的年份则相反 一类因子其实也只是一种套路或者说一种市场偏好选股风格的集成, 如何去高效利用好这种因子, 才是我们应该去研究的问题。 平常做模型的因子如果想不到在哪来, 可以在因子看板里面去找找。

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-5940:features_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:test_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"-215:features","from_node_id":"-5940:data"},{"to_node_id":"-222:features","from_node_id":"-5940:data"},{"to_node_id":"-231:features","from_node_id":"-5940:data"},{"to_node_id":"-238:features","from_node_id":"-5940:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2005-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"模板因子","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-5940","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\n\n# 未来2天的 收益\nday_return_2=(shift(close_0, -2)-shift(open_0, -1))/shift(open_0, -1)\n# 未来3天的 收益\nday_return_3=(shift(close_0, -3)-shift(open_0, -1))/shift(open_0, -1)\n# 未来5天的 收益\nday_return_5=(shift(close_0, -5)-shift(open_0, -1))/shift(open_0, -1)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-5940"}],"output_ports":[{"name":"data","node_id":"-5940"}],"cacheable":true,"seq_num":4,"comment":"用来检测时间长短带来的收益变化","comment_collapsed":false},{"node_id":"-2484","module_id":"BigQuantSpace.hyper_parameter_search.hyper_parameter_search-v1","parameters":[{"name":"param_grid_builder","value":"def bigquant_run():\n param_grid = {}\n #'m1.start_date': '2005-01-01',\n #'m1.end_date': '2010-01-01',\n \n# year_list=['2020-01-01','2021-01-01']\n# for i in range(10):\n# year_list.append('201{}-01-01'.format(i))\n# param_grid['m1.end_date']=year_list\n year_last=['2018-08-01','2019-10-01',\n '2020-02-01',\n '2020-06-01',\n '2020-10-01',\n '2020-12-01']\n# for i in range(12,-1):\n# year_list.append('2020-{}-01'.format(i))\n param_grid['m1.start_date']=year_last\n \n return param_grid\n","type":"Literal","bound_global_parameter":null},{"name":"scoring","value":"def bigquant_run(result):\n score = result.get('m19').read_raw_perf()['sharpe'].tail(1)[0]\n\n return {'score': score}\n","type":"Literal","bound_global_parameter":null},{"name":"search_algorithm","value":"网格搜索","type":"Literal","bound_global_parameter":null},{"name":"search_iterations","value":10,"type":"Literal","bound_global_parameter":null},{"name":"random_state","value":"","type":"Literal","bound_global_parameter":null},{"name":"workers","value":"3","type":"Literal","bound_global_parameter":null},{"name":"worker_distributed_run","value":"True","type":"Literal","bound_global_parameter":null},{"name":"worker_silent","value":"False","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-2484"},{"name":"input_1","node_id":"-2484"},{"name":"input_2","node_id":"-2484"},{"name":"input_3","node_id":"-2484"}],"output_ports":[{"name":"result","node_id":"-2484"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='79,187,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='713,13,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='657,557,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='236,370,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='391,443,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='365,194,200,200'/><node_position Node='-222' Position='374,290,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='1037,751,200,200'/><node_position Node='-5940' Position='715,173,200,200'/><node_position Node='-2484' Position='396,623,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [1]:
    # 本代码由可视化策略环境自动生成 2023年2月28日 11:33
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.options['hold_days'] = 5
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.portfolio.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.portfolio.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities)])))
    
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        pass
    
    
    g = T.Graph({
    
        'm1': 'M.instruments.v2',
        'm1.start_date': '2005-01-01',
        'm1.end_date': '2016-01-01',
        'm1.market': 'CN_STOCK_A',
        'm1.instrument_list': '',
        'm1.max_count': 0,
    
        'm2': 'M.advanced_auto_labeler.v2',
        'm2.instruments': T.Graph.OutputPort('m1.data'),
        'm2.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        'm2.start_date': '',
        'm2.end_date': '',
        'm2.benchmark': '000300.HIX',
        'm2.drop_na_label': True,
        'm2.cast_label_int': True,
    
        'm3': 'M.input_features.v1',
        'm3.features': """# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    return_5
    return_10
    return_20
    avg_amount_0/avg_amount_5
    avg_amount_5/avg_amount_20
    rank_avg_amount_0/rank_avg_amount_5
    rank_avg_amount_5/rank_avg_amount_10
    rank_return_0
    rank_return_5
    rank_return_10
    rank_return_0/rank_return_5
    rank_return_5/rank_return_10
    pe_ttm_0
    """,
    
        'm4': 'M.input_features.v1',
        'm4.features_ds': T.Graph.OutputPort('m3.data'),
        'm4.features': """# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    
    # 未来2天的 收益
    day_return_2=(shift(close_0, -2)-shift(open_0, -1))/shift(open_0, -1)
    # 未来3天的 收益
    day_return_3=(shift(close_0, -3)-shift(open_0, -1))/shift(open_0, -1)
    # 未来5天的 收益
    day_return_5=(shift(close_0, -5)-shift(open_0, -1))/shift(open_0, -1)""",
    
        'm15': 'M.general_feature_extractor.v7',
        'm15.instruments': T.Graph.OutputPort('m1.data'),
        'm15.features': T.Graph.OutputPort('m4.data'),
        'm15.start_date': '',
        'm15.end_date': '',
        'm15.before_start_days': 90,
    
        'm16': 'M.derived_feature_extractor.v3',
        'm16.input_data': T.Graph.OutputPort('m15.data'),
        'm16.features': T.Graph.OutputPort('m4.data'),
        'm16.date_col': 'date',
        'm16.instrument_col': 'instrument',
        'm16.drop_na': False,
        'm16.remove_extra_columns': False,
    
        'm7': 'M.join.v3',
        'm7.data1': T.Graph.OutputPort('m2.data'),
        'm7.data2': T.Graph.OutputPort('m16.data'),
        'm7.on': 'date,instrument',
        'm7.how': 'inner',
        'm7.sort': False,
    
        'm13': 'M.dropnan.v1',
        'm13.input_data': T.Graph.OutputPort('m7.data'),
    
        'm6': 'M.stock_ranker_train.v5',
        'm6.training_ds': T.Graph.OutputPort('m13.data'),
        'm6.features': T.Graph.OutputPort('m3.data'),
        'm6.test_ds': T.Graph.OutputPort('m13.data'),
        'm6.learning_algorithm': '排序',
        'm6.number_of_leaves': 30,
        'm6.minimum_docs_per_leaf': 1000,
        'm6.number_of_trees': 20,
        'm6.learning_rate': 0.1,
        'm6.max_bins': 1023,
        'm6.feature_fraction': 1,
        'm6.m_lazy_run': False,
    
        'm9': 'M.instruments.v2',
        'm9.start_date': T.live_run_param('trading_date', '2021-01-01'),
        'm9.end_date': T.live_run_param('trading_date', '2021-12-31'),
        'm9.market': 'CN_STOCK_A',
        'm9.instrument_list': '',
        'm9.max_count': 0,
    
        'm17': 'M.general_feature_extractor.v7',
        'm17.instruments': T.Graph.OutputPort('m9.data'),
        'm17.features': T.Graph.OutputPort('m4.data'),
        'm17.start_date': '',
        'm17.end_date': '',
        'm17.before_start_days': 90,
    
        'm18': 'M.derived_feature_extractor.v3',
        'm18.input_data': T.Graph.OutputPort('m17.data'),
        'm18.features': T.Graph.OutputPort('m4.data'),
        'm18.date_col': 'date',
        'm18.instrument_col': 'instrument',
        'm18.drop_na': False,
        'm18.remove_extra_columns': False,
    
        'm14': 'M.dropnan.v1',
        'm14.input_data': T.Graph.OutputPort('m18.data'),
    
        'm8': 'M.stock_ranker_predict.v5',
        'm8.model': T.Graph.OutputPort('m6.model'),
        'm8.data': T.Graph.OutputPort('m14.data'),
        'm8.m_lazy_run': False,
    
        'm19': 'M.trade.v4',
        'm19.instruments': T.Graph.OutputPort('m9.data'),
        'm19.options_data': T.Graph.OutputPort('m8.predictions'),
        'm19.start_date': '',
        'm19.end_date': '',
        'm19.initialize': m19_initialize_bigquant_run,
        'm19.handle_data': m19_handle_data_bigquant_run,
        'm19.prepare': m19_prepare_bigquant_run,
        'm19.volume_limit': 0.025,
        'm19.order_price_field_buy': 'open',
        'm19.order_price_field_sell': 'close',
        'm19.capital_base': 1000000,
        'm19.auto_cancel_non_tradable_orders': True,
        'm19.data_frequency': 'daily',
        'm19.price_type': '真实价格',
        'm19.product_type': '股票',
        'm19.plot_charts': True,
        'm19.backtest_only': False,
        'm19.benchmark': '000300.HIX',
    })
    
    # g.run({})
    
    
    def m5_param_grid_builder_bigquant_run():
        param_grid = {}
        #'m1.start_date': '2005-01-01',
        #'m1.end_date': '2010-01-01',
        
    #     year_list=['2020-01-01','2021-01-01']
    #     for i in range(10):
    #         year_list.append('201{}-01-01'.format(i))
    #     param_grid['m1.end_date']=year_list
        year_last=['2018-08-01','2019-10-01',
     '2020-02-01',
     '2020-06-01',
     '2020-10-01',
     '2020-12-01']
    #     for i in range(12,-1):
    #         year_list.append('2020-{}-01'.format(i))
        param_grid['m1.start_date']=year_last
     
        return param_grid
    
    def m5_scoring_bigquant_run(result):
        score = result.get('m19').read_raw_perf()['sharpe'].tail(1)[0]
    
        return {'score': score}
    
    
    m5 = M.hyper_parameter_search.v1(
        param_grid_builder=m5_param_grid_builder_bigquant_run,
        scoring=m5_scoring_bigquant_run,
        search_algorithm='网格搜索',
        search_iterations=10,
        workers=3,
        worker_distributed_run=True,
        worker_silent=False,
        run_now=True,
        bq_graph=g
    )
    
    Fitting 1 folds for each of 6 candidates, totalling 6 fits
    [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
    [CV 1/1; 1/6] START m1.start_date=2018-08-01....................................
    
    [CV 1/1; 1/6] END ..................m1.start_date=2018-08-01; total time=  33.8s
    [Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:   33.8s remaining:    0.0s
    [CV 1/1; 2/6] START m1.start_date=2019-10-01....................................
    
    [CV 1/1; 2/6] END ..................m1.start_date=2019-10-01; total time=  40.6s
    [Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:  1.2min remaining:    0.0s
    [CV 1/1; 3/6] START m1.start_date=2020-02-01....................................
    
    [CV 1/1; 3/6] END ..................m1.start_date=2020-02-01; total time=  40.6s
    [Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:  1.9min remaining:    0.0s
    [CV 1/1; 4/6] START m1.start_date=2020-06-01....................................
    
    [CV 1/1; 4/6] END ..................m1.start_date=2020-06-01; total time=  40.7s
    [Parallel(n_jobs=1)]: Done   4 out of   4 | elapsed:  2.6min remaining:    0.0s
    [CV 1/1; 5/6] START m1.start_date=2020-10-01....................................
    
    [CV 1/1; 5/6] END ..................m1.start_date=2020-10-01; total time=  30.6s
    [Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:  3.1min remaining:    0.0s
    [CV 1/1; 6/6] START m1.start_date=2020-12-01....................................
    
    [CV 1/1; 6/6] END ..................m1.start_date=2020-12-01; total time=  40.6s
    [Parallel(n_jobs=1)]: Done   6 out of   6 | elapsed:  3.8min remaining:    0.0s
    [Parallel(n_jobs=1)]: Done   6 out of   6 | elapsed:  3.8min finished
    
    In [4]:
    m6.plot_test_data_ndcg('Series')
    
    ---------------------------------------------------------------------------
    NameError                                 Traceback (most recent call last)
    <ipython-input-4-b3d5a30e577f> in <module>
    ----> 1 m6.plot_test_data_ndcg('Series')
    
    NameError: name 'm6' is not defined
    In [3]:
    #data1=eval(m6.plot_test_data_ndcg('Series'))#[2]#["name"]#=="NDCG@1"
    #print(tyabspe(data1))
    data1=m6.plot_test_data_ndcg('Series')
    #eval()
    data1
    
    ---------------------------------------------------------------------------
    NameError                                 Traceback (most recent call last)
    <ipython-input-3-3572e94b72c7> in <module>
          1 #data1=eval(m6.plot_test_data_ndcg('Series'))#[2]#["name"]#=="NDCG@1"
          2 #print(tyabspe(data1))
    ----> 3 data1=m6.plot_test_data_ndcg('Series')
          4 #eval()
          5 data1
    
    NameError: name 'm6' is not defined
    In [27]:
    def index_of_str(s1, s2):
        res = []
        index = 0
        if s1 == "" or s2 == "":
            return -1
        split_list = s1.split(s2)
        for i in range(len(split_list) - 1):
            index += len(split_list[i])
            res.append(index)
            index += len(s2)
        return res if res else -1
    
    str1 =data1#"cdembccdefacddelhpzmrtcdeqpjcde"
    str2 = "data"
    print("字符串 {}  中出现的位置:{} ".format(str2,  index_of_str(str1, str2)))
    
    字符串 data  中出现的位置:[96, 138, 360, 619, 887, 1155, 1423, 1690, 1950, 2216, 2484, 2752, 3043] 
    
    In [ ]:
    
    
    In [ ]:
     
    
    In [26]:
    date_windows =['2005-01,2010-01','2005-01,2011-01','2005-01,2012-01','2005-01,2013-01','2005-01,2014-01','2005-01,2015-01','2005-01,2016-01','2005-01,2017-01','2005-01,2018-01','2005-01,2019-01','2005-01,2020-01','2005-01,2021-01',]
    date_df_1 = pd.DataFrame( columns=['训练集数据时间','训练集NDCG_max','预测集收益率','预测集夏普',] )
    
    ndg_max=[0.527,0.524,0.527,0.518,0.523,0.512,0.508,0.502,0.493,0.495,0.493,0.492]
    shape=[1.724,1.499,0.993,1.857,0.825,0.60,3.278,0.453,1.348,2.440,2.381,2.154]
    return_pre=[0.509,0.374,0.275,0.56,0.21,0.16,1.02,0.101,0.325,0.547,0.51,0.168]
    date_df_1['训练集数据时间']=date_windows
    date_df_1['训练集NDCG_max']=ndg_max
    date_df_1['预测集收益率']=return_pre
    date_df_1['预测集夏普']=shape
    date_df_1
    #date_df_1.to_csv('long_term_predit.csv')
    
    Out[26]:
    训练集数据时间 训练集NDCG_max 预测集收益率 预测集夏普
    0 2005-01,2010-01 0.527 0.509 1.724
    1 2005-01,2011-01 0.524 0.374 1.499
    2 2005-01,2012-01 0.527 0.275 0.993
    3 2005-01,2013-01 0.518 0.560 1.857
    4 2005-01,2014-01 0.523 0.210 0.825
    5 2005-01,2015-01 0.512 0.160 0.600
    6 2005-01,2016-01 0.508 1.020 3.278
    7 2005-01,2017-01 0.502 0.101 0.453
    8 2005-01,2018-01 0.493 0.325 1.348
    9 2005-01,2019-01 0.495 0.547 2.440
    10 2005-01,2020-01 0.493 0.510 2.381
    11 2005-01,2021-01 0.492 0.168 2.154
    In [28]:
    import matplotlib.pyplot as plt
    import numpy as np
    df =pd.DataFrame(date_df_1, columns=['训练集数据时间','训练集NDCG_max','预测集收益率','预测集夏普']) 
    plt.plot(date_df_1['训练集数据时间'],date_df_1['训练集NDCG_max'],) 
    plt.plot(date_df_1['训练集数据时间'],date_df_1['预测集收益率'],) 
    plt.plot(date_df_1['训练集数据时间'],date_df_1['预测集夏普'],)
    plt.figure(); df.plot(); plt.legend(loc='best')
    
    Out[28]:
    <matplotlib.legend.Legend at 0x7fe8a4abf250>
    <Figure size 432x288 with 0 Axes>
    In [22]:
    date_windows1 =['2018-08-01,2021-01-01','2019-10-01,2021-01-01',
     '2020-02-01,2021-01-01',
     '2020-06-01,2021-01-01',
     '2020-10-01,2021-01-01',
     '2020-12-01,2021-01-01']
    date_df_2 = pd.DataFrame( columns=['训练集数据时间','训练集NDCG_max','预测集收益率','预测集夏普',] )
    #date_df.index.name = 'CompanyName'
    ndg_max1=[0.496,0.486,0.491,0.534,0.550,0.383]
    shape1=[1.618,0.802,1.613,2.496,0.146,0.903]
    return_pre1=[0.39,0.19,0.32,0.678,0.031,0.35,]
    date_df_2['训练集数据时间']=date_windows1
    date_df_2['训练集NDCG_max']=ndg_max1
    date_df_2['预测集收益率']=return_pre1
    date_df_2['预测集夏普']=shape1
    #date_df_2.to_csv('short_term_predit.csv')
    date_df_2
    
    Out[22]:
    训练集数据时间 训练集NDCG_max 预测集收益率 预测集夏普
    0 2018-08-01,2021-01-01 0.496 0.390 1.618
    1 2019-10-01,2021-01-01 0.486 0.190 0.802
    2 2020-02-01,2021-01-01 0.491 0.320 1.613
    3 2020-06-01,2021-01-01 0.534 0.678 2.496
    4 2020-10-01,2021-01-01 0.550 0.031 0.146
    5 2020-12-01,2021-01-01 0.383 0.350 0.903
    In [19]:
    import matplotlib.pyplot as plt
    import numpy as np
    df =pd.DataFrame(date_df_2, columns=['训练集数据时间','训练集NDCG_max','预测集收益率','预测集夏普']) 
    plt.plot(date_df_2['训练集数据时间'],date_df_2['训练集NDCG_max'],) 
    plt.plot(date_df_2['训练集数据时间'],date_df_2['预测集收益率'],) 
    plt.plot(date_df_2['训练集数据时间'],date_df_2['预测集夏普'],)
    plt.figure(); df.plot(); plt.legend(loc='best')
    
    Out[19]:
    <matplotlib.legend.Legend at 0x7fe879a83550>
    <Figure size 432x288 with 0 Axes>
    In [ ]:
    # import matplotlib.pyplot as plt
    # import numpy as np
    # plt.figure(figsize=(36,12))
    # for i in range(1,3):
           
            
    #     date_df_1
    #     #abnormalreturns_df =  cal_abnormol(day1=day1,day2=x1,day_total_end=y1)
    #     plt.subplot(4,4,i)
    #     date_df_1[date_df_1.columns[i-1]].plot()
    #     plt.xlabel('Event Window{}'.format(date_windows[i-1]),fontsize=13, fontdict={"family": 'SimSun', "size": 15, "color": "r"})
    #     plt.ylabel('Return',fontsize=13, fontdict={"family": 'SimSun', "size": 15, "color": "r"})
    #     #plt.axhline(y=(np.sqrt((abnormalreturns_df.iloc[:,i-1].std()**2/21))*1.96),color='red',linestyle='--')
    #     #plt.axhline(y=(np.sqrt((abnormalreturns_df.iloc[:,i-1].std()**2/21))*-1.96),color='red',linestyle='--')
    #     plt.title(date_df_1.columns[i-1])