AI选股策略

AI选股策略是一种应用人工智能技术于金融投资领域的前沿实践。通过深度学习和大数据分析,AI系统能够实时处理海量市场信息,识别复杂模式,并基于历史数据预测未来股票走势。这种策略不仅提高了投资决策的效率和准确性,还降低了人为情绪和传统分析方法的局限性,为投资者提供了一种更加科学、客观的选股方式。随着技术的不断发展和数据的日益丰富,AI选股策略在金融市场中的应用前景广阔,有望为投资者带来更为稳定和可持续的投资回报。

AI选股中回归、分类、排序算法的构建流程

导语

【旧版模块】,该文档为旧版。新模板详见:

https://bigquant.com/wiki/doc/102-ai-hXNHGsyWzS

在阅读了学院关于可视化模板教程后,相信你已经掌握了平台上的模块使用方法。本文将以XGBoost模型为例,介绍回归、排序、分类的不同之处。在文末,你可以克隆该算法自行研究、学习

首先我们明确一下算法在机器学习中的地位。一般来说,机器学习有三个要素:数据、算法和模型

  • 数据是场景的描述,包括输入和输出。
  • 算法

更新时间:2024-06-11 02:53

DNN-AI选股:深度学习的学习率调整

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

如何构建筹码因子进行AI选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

AI选股重要指标及公式图示详解

基本概念

AI选股通过人工智能技术对股票市场的数据进行分析和预测,从而筛选出具有较高投资价值的股票。这些指标可以包括多种因素,如技术指标、基本面指标、市场情绪指标等。AI选股通常涉及复杂的机器学习模型,这里将介绍一些基础但重要的金融指标,这些指标常被用于构建更复杂的AI选股模型。

1. 移动平均线(Moving Averages)

移动平均线是分析股价趋势的基本工具,包括简单移动平均(SMA)和指数移动平均(EMA)。

简单移动平均SMA公式

SMA(N)=( ∑(N, i=1), Close i) / N​ ![](/wiki/api

更新时间:2024-06-07 10:48

AI选股策略——去除退市股

【旧版说明】此文档为旧版,相关新版文档参考:

https://bigquant.com/wiki/doc/102-ai-hXNHGsyWzS

新建一个可视化AI选股策略,如下图所示:

在训练集流程中的缺失数据处理模块m13前加入模块“去除退市股”m27(从“用户模块”——“共享模块”中找到并拖入画布),即可实现在训练集中去除退市的股票

在验证集流程中的缺失数据处理模块m14前加入模块“去除退市股”m27(从“用户模块”——“共享模块”中找到并拖入画布),即可实现在验证集中去除退市的股票

更新时间:2024-05-20 03:41

AI选股策略——指定验证集概念板块

【旧版】,此文档为旧版,相关新版文档参考:

https://bigquant.com/wiki/doc/103-ai-LpsqDhu8mG

新建一个可视化AI选股策略,如下图所示:

在预测集流程中的缺失数据处理模块m14前加入模块“选取指定概念板块股”m27(从“用户模块”——“共享模块”中找到并拖入画布)

连接模块m18和模块m27即可实现指定验证集股票范围为指定的概念板块。

[https://bigquant.com/experimentshare/bf7775a5e6d3494

更新时间:2024-05-20 02:02

AI选股策略——去除st股票

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版实现

新版去除st股票更加方便,仅需在输入特征列表模块的表达式过滤条件里加上st_status = 0 的过滤条件即可




版本v1.0

新建一个可视化AI选股策略,如

更新时间:2024-05-20 00:39

AI选股策略_概念过滤

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 07:50

AI选股策略选择场内基金CN_FUND自动标注模块报错

问题

自动标准任意数据源报错如下:


HDF5ExtError Traceback (most recent call last) HDF5ExtError: HDF5 error back trace

File "H5F.c", line 509, in H5Fopen unable to open file File "H5Fint.c", line 1400, in H5F__open unable to open file File "H5Fint.c", line 1700, in H5F_open unable

更新时间:2023-06-01 02:13

AI 选股策略bug

问题

{w:100}{w:100}

解答

重启开发环境

更新时间:2022-12-20 14:20

AI选股策略——综合过滤

新建一个可视化AI选股策略,如下图所示:

在训练集流程中的缺失数据处理模块m13前加入模块“去除退市股”、“过滤市场”、“过滤st股票”(从“用户模块”——“共享模块”中找到并拖入画布)即可实现相应的过滤功能;

在验证集流程中的缺失数据处理模块m14前加入模块“去除退市股”、“过滤市场”、“选取指定概念板块股”、“过滤st股票”(从“用户模块”——“共享模块”中找到并拖入画布)即可实现相应的过滤功能。

[https://bigquant.com/experimentshare/81d64826251e47d6b10cf2bea879bf38](https://bigquant.com/e

更新时间:2022-09-01 23:27

可视化策略-AI选股

可视化策略-AI选股

https://bigquant.com/experimentshare/b08f437e5ee94168b0bc856f6f650ad2

\

更新时间:2022-03-04 06:37

AI选股策略——去除创业板股票

新建一个可视化AI选股策略,如下图所示:

在训练集流程中的缺失数据处理模块m13前加入模块“过滤市场”m25(从“用户模块”——“共享模块”中找到并拖入画布)并在参数窗口中填入3,即可实现在训练集中去除创业板股票

在测试集流程中的缺失数据处理模块m14前加入模块“过滤市场”m26(从“用户模块”——“共享模块”中找到并拖入画布)并在参数窗口中填入3,即可实现在测试集中去除创业板股票

[https://bigquant.com/experimentshare/83a7616bb36845d296a03c0aa8fce5d2](https://bigquant.com/experimen

更新时间:2022-03-04 02:56

分页第1页
{link}