研报&论文

跟着李沐学AI—ResNet论文精读【含研报及视频】

由qxiao创建,最终由qxiao 被浏览 56 用户

原文标题:Deep Residual Learning for Image Recognition

发布时间:2015年

作者:Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research

{w:100}{w:100}{w:100}{w:100}摘要

越深的神经网络训练起来越困难。本文展示了一种残差学习框架,能够简化使那些非常深的网络的训练,该框架使得层能根据其输入来学习残差函数而非原始函数(unreferenced functions)。本文提供了全面的依据表明,这些残差网络的优化更简单,而且能由更深的层来获得更高的准确率。本文在ImageNet数据集上使用了一个152层深的网络来评估我们的残差网络,虽然它相当于8倍深的VGG网络,但是在本文的框架中仍然只具有很低的复杂度。这些残差网络的一个组合模型(ensemble)在ImageNet测试集上的错误率仅为 3.57%。这个结果在2015年的ILSVRC分类任务上获得了第一名的成绩。我们在CIFAR-10上对100层和1000层的残差网络也进行了分析。

表达的深度在很多视觉识别任务中具有非常核心的重要性。仅仅由于我们相当深的表达,便在COCO目标检测数据集上获得了 28% 的相对提升。 深度残差网络是我们参加ILSVRC & COCO 2015 竞赛上所使用模型的基础,并且我们在ImageNet检测、ImageNet定位、COCO检测以及COCO分割上均获得了第一名的成绩

介绍

深度卷积神经网络在图像分类领域取得了一系列的突破 。 深度网络很好的将一个端到端的多层模型中的低/中/高级特征以及分类器整合起来,特征的等级可以通过所堆叠层的数量(深度)来丰富。最近有结果显示,模型的深度发挥着至关重要的作用,这样导致了ImageNet竞赛的参赛模型都趋向于“非常深”——16 层 到30层 。许多其它的视觉识别任务的都得益于非常深的模型。

在深度的重要性的驱使下,出现了一个新的问题:训练一个更好的网络是否和堆叠更多的层一样简单呢?解决这一问题的障碍便是困扰人们很久的梯度消失/梯度爆炸,这从一开始便阻碍了模型的收敛。归一初始化(normalized initialization)和中间归一化(intermediate normalization)在很大程度上解决了这一问题,它使得数十层的网络在反向传播的随机梯度下降(SGD)上能够收敛。

当深层网络能够收敛时,一个退化问题又出现了:随着网络深度的增加,准确率达到饱和(不足为奇)然后迅速退化。意外的是,这种退化并不是由过拟合造成的,并且在一个合理的深度模型中增加更多的层却导致了更高的错误率,我们的实验也证明了这点。

研报PDF

/wiki/static/upload/55/558c9283-aa8c-4f38-bdfd-8b9ddb7b6647.pdf

\

视频解读

https://www.bilibili.com/video/BV1P3411y7nn/

\

标签

深度学习卷积神经网络CNNResnet
{link}