克隆策略
{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-231:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-118:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-132:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-250:options_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-231:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-250:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-238:input_data","SourceOutputPortId":"-231:data"},{"DestinationInputPortId":"-136:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"-118:model"},{"DestinationInputPortId":"-118:training_ds","SourceOutputPortId":"-132:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-136:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2021-04-02","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2021-04-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-231","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-231"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-231"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-231","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-250","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-250"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-250","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-118","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-118"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-118"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-118"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-118"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-118","OutputType":null},{"Name":"feature_gains","NodeId":"-118","OutputType":null},{"Name":"m_lazy_run","NodeId":"-118","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-132","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-132"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-132"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-132","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-136","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-136"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-136"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-136","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><NodePosition Node='-215' Position='381,188,200,200'/><NodePosition Node='-222' Position='385,280,200,200'/><NodePosition Node='-231' Position='1078,236,200,200'/><NodePosition Node='-238' Position='1081,327,200,200'/><NodePosition Node='-250' Position='1037,751,200,200'/><NodePosition Node='-118' Position='638,561,200,200'/><NodePosition Node='-132' Position='376,467,200,200'/><NodePosition Node='-136' Position='1078,418,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":false}
In [3]:
# 本代码由可视化策略环境自动生成 2021年4月2日22:51
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# 回测引擎:初始化函数,只执行一次
def m19_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
# 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
# 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
stock_count = 5
# 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
# 设置每只股票占用的最大资金比例
context.max_cash_per_instrument = 0.2
context.options['hold_days'] = 5
# 回测引擎:每日数据处理函数,每天执行一次
def m19_handle_data_bigquant_run(context, data):
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
# 1. 资金分配
# 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
# 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
positions = {e.symbol: p.amount * p.last_sale_price
for e, p in context.portfolio.positions.items()}
# 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
if not is_staging and cash_for_sell > 0:
equities = {e.symbol: e for e, p in context.portfolio.positions.items()}
instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
lambda x: x in equities)])))
for instrument in instruments:
context.order_target(context.symbol(instrument), 0)
cash_for_sell -= positions[instrument]
if cash_for_sell <= 0:
break
# 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
buy_cash_weights = context.stock_weights
buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
for i, instrument in enumerate(buy_instruments):
cash = cash_for_buy * buy_cash_weights[i]
if cash > max_cash_per_instrument - positions.get(instrument, 0):
# 确保股票持仓量不会超过每次股票最大的占用资金量
cash = max_cash_per_instrument - positions.get(instrument, 0)
if cash > 0:
context.order_value(context.symbol(instrument), cash)
# 回测引擎:准备数据,只执行一次
def m19_prepare_bigquant_run(context):
pass
m1 = M.instruments.v2(
start_date='2019-01-01',
end_date='2021-04-02',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m2 = M.advanced_auto_labeler.v2(
instruments=m1.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
# 添加benchmark_前缀,可使用对应的benchmark数据
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(close, -5) / shift(open, -1)
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 将分数映射到分类,这里使用20个分类
all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
""",
start_date='',
end_date='',
benchmark='000300.SHA',
drop_na_label=True,
cast_label_int=True
)
m3 = M.input_features.v1(
features="""# #号开始的表示注释
# 多个特征,每行一个,可以包含基础特征和衍生特征
return_5
return_10
return_20
avg_amount_0/avg_amount_5
avg_amount_5/avg_amount_20
rank_avg_amount_0/rank_avg_amount_5
rank_avg_amount_5/rank_avg_amount_10
rank_return_0
rank_return_5
rank_return_10
rank_return_0/rank_return_5
rank_return_5/rank_return_10
pe_ttm_0
"""
)
m15 = M.general_feature_extractor.v7(
instruments=m1.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=90
)
m16 = M.derived_feature_extractor.v3(
input_data=m15.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m7 = M.join.v3(
data1=m2.data,
data2=m16.data,
on='date,instrument',
how='inner',
sort=False
)
m5 = M.dropnan.v2(
input_data=m7.data
)
m4 = M.stock_ranker_train.v6(
training_ds=m5.data,
features=m3.data,
learning_algorithm='排序',
number_of_leaves=30,
minimum_docs_per_leaf=1000,
number_of_trees=20,
learning_rate=0.1,
max_bins=1023,
feature_fraction=1,
data_row_fraction=1,
ndcg_discount_base=1,
m_lazy_run=False
)
m9 = M.instruments.v2(
start_date=T.live_run_param('trading_date', '2019-01-01'),
end_date=T.live_run_param('trading_date', '2021-04-01'),
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m17 = M.general_feature_extractor.v7(
instruments=m9.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=90
)
m18 = M.derived_feature_extractor.v3(
input_data=m17.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m10 = M.dropnan.v2(
input_data=m18.data
)
m8 = M.stock_ranker_predict.v5(
model=m4.model,
data=m10.data,
m_lazy_run=False
)
m19 = M.trade.v4(
instruments=m9.data,
options_data=m8.predictions,
start_date='',
end_date='',
initialize=m19_initialize_bigquant_run,
handle_data=m19_handle_data_bigquant_run,
prepare=m19_prepare_bigquant_run,
volume_limit=0.025,
order_price_field_buy='open',
order_price_field_sell='close',
capital_base=1000000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='真实价格',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.SHA'
)
日志 216 条,错误日志
0 条
[2021-04-02 22:30:05.083389] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-04-02 22:30:05.215001] INFO: moduleinvoker: instruments.v2 运行完成[0.131304s].
[2021-04-02 22:30:05.219529] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-04-02 22:30:08.167145] INFO: 自动标注(股票): 加载历史数据: 2080798 行
[2021-04-02 22:30:08.168939] INFO: 自动标注(股票): 开始标注 ..
[2021-04-02 22:30:13.531814] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[8.312284s].
[2021-04-02 22:30:13.534644] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-04-02 22:30:13.541912] INFO: moduleinvoker: 命中缓存
[2021-04-02 22:30:13.543308] INFO: moduleinvoker: input_features.v1 运行完成[0.00867s].
[2021-04-02 22:30:13.551884] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-04-02 22:30:15.147579] INFO: 基础特征抽取: 年份 2018, 特征行数=210561
[2021-04-02 22:30:18.541923] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2021-04-02 22:30:22.019206] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2021-04-02 22:30:23.145330] INFO: 基础特征抽取: 年份 2021, 特征行数=249976
[2021-04-02 22:30:24.116086] INFO: 基础特征抽取: 总行数: 2291365
[2021-04-02 22:30:24.134154] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[10.582276s].
[2021-04-02 22:30:24.137214] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-04-02 22:30:31.069464] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.007s
[2021-04-02 22:30:31.077761] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.007s
[2021-04-02 22:30:31.083009] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.004s
[2021-04-02 22:30:31.088190] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.004s
[2021-04-02 22:30:31.093570] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.004s
[2021-04-02 22:30:31.153760] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.059s
[2021-04-02 22:30:32.025474] INFO: derived_feature_extractor: /y_2018, 210561
[2021-04-02 22:30:34.653914] INFO: derived_feature_extractor: /y_2019, 884867
[2021-04-02 22:30:38.024870] INFO: derived_feature_extractor: /y_2020, 945961
[2021-04-02 22:30:39.555674] INFO: derived_feature_extractor: /y_2021, 249976
[2021-04-02 22:30:41.080095] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[16.942875s].
[2021-04-02 22:30:41.083184] INFO: moduleinvoker: join.v3 开始运行..
[2021-04-02 22:30:48.571496] INFO: join: /y_2018, 行数=0/210561, 耗时=1.350171s
[2021-04-02 22:30:53.051588] INFO: join: /y_2019, 行数=881288/884867, 耗时=4.475549s
[2021-04-02 22:30:57.831978] INFO: join: /y_2020, 行数=939898/945961, 耗时=4.739513s
[2021-04-02 22:30:59.483548] INFO: join: /y_2021, 行数=228169/249976, 耗时=1.619108s
[2021-04-02 22:31:00.533985] INFO: join: 最终行数: 2049355
[2021-04-02 22:31:00.616924] INFO: moduleinvoker: join.v3 运行完成[19.533728s].
[2021-04-02 22:31:00.620703] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-04-02 22:31:00.677677] INFO: dropnan: /y_2018, 0/0
[2021-04-02 22:31:02.291686] INFO: dropnan: /y_2019, 877946/881288
[2021-04-02 22:31:04.164245] INFO: dropnan: /y_2020, 931362/939898
[2021-04-02 22:31:05.056958] INFO: dropnan: /y_2021, 226192/228169
[2021-04-02 22:31:05.561712] INFO: dropnan: 行数: 2035500/2049355
[2021-04-02 22:31:05.584935] INFO: moduleinvoker: dropnan.v2 运行完成[4.964204s].
[2021-04-02 22:31:05.592458] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2021-04-02 22:31:08.109538] INFO: StockRanker: 特征预处理 ..
[2021-04-02 22:31:11.224894] INFO: StockRanker: prepare data: training ..
[2021-04-02 22:31:14.393307] INFO: StockRanker: sort ..
[2021-04-02 22:31:38.707299] INFO: StockRanker训练: 0eca0b58 准备训练: 2035500 行数
[2021-04-02 22:31:38.708799] INFO: StockRanker训练: AI模型训练,将在2035500*13=2646.15万数据上对模型训练进行20轮迭代训练。预计将需要9~17分钟。请耐心等待。
[2021-04-02 22:31:40.953367] INFO: StockRanker训练: 正在训练 ..
[2021-04-02 22:31:41.243501] INFO: StockRanker训练: 任务状态: Pending
[2021-04-02 22:31:51.290412] INFO: StockRanker训练: 任务状态: Running
[2021-04-02 22:32:01.357894] INFO: StockRanker训练: 00:00:16.2941045, finished iteration 1
[2021-04-02 22:32:21.450112] INFO: StockRanker训练: 00:00:33.2779125, finished iteration 2
[2021-04-02 22:32:41.625651] INFO: StockRanker训练: 00:00:50.0861327, finished iteration 3
[2021-04-02 22:33:01.976971] INFO: StockRanker训练: 00:01:11.0758597, finished iteration 4
[2021-04-02 22:33:26.716654] INFO: StockRanker训练: 00:01:36.3127709, finished iteration 5
[2021-04-02 22:33:56.842856] INFO: StockRanker训练: 00:02:04.2886187, finished iteration 6
[2021-04-02 22:34:26.991575] INFO: StockRanker训练: 00:02:34.7040288, finished iteration 7
[2021-04-02 22:34:57.211783] INFO: StockRanker训练: 00:03:06.3851100, finished iteration 8
[2021-04-02 22:35:27.421786] INFO: StockRanker训练: 00:03:39.5497497, finished iteration 9
[2021-04-02 22:36:07.690363] INFO: StockRanker训练: 00:04:16.5231455, finished iteration 10
[2021-04-02 22:36:37.985204] INFO: StockRanker训练: 00:04:54.4132599, finished iteration 11
[2021-04-02 22:37:19.070243] INFO: StockRanker训练: 00:05:31.5632671, finished iteration 12
[2021-04-02 22:37:59.414800] INFO: StockRanker训练: 00:06:06.2475714, finished iteration 13
[2021-04-02 22:38:29.570060] INFO: StockRanker训练: 00:06:40.9251571, finished iteration 14
[2021-04-02 22:39:01.020641] INFO: StockRanker训练: 00:07:17.1751925, finished iteration 15
[2021-04-02 22:39:41.216227] INFO: StockRanker训练: 00:07:55.9296872, finished iteration 16
[2021-04-02 22:40:31.433538] INFO: StockRanker训练: 00:08:39.7826568, finished iteration 17
[2021-04-02 22:41:11.596827] INFO: StockRanker训练: 00:09:19.2197482, finished iteration 18
[2021-04-02 22:41:41.832895] INFO: StockRanker训练: 00:09:55.7874668, finished iteration 19
[2021-04-02 22:42:22.028264] INFO: StockRanker训练: 00:10:30.2017938, finished iteration 20
[2021-04-02 22:42:22.029592] INFO: StockRanker训练: 任务状态: Succeeded
[2021-04-02 22:42:22.167850] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[676.575399s].
[2021-04-02 22:42:22.170718] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-04-02 22:42:22.176531] INFO: moduleinvoker: 命中缓存
[2021-04-02 22:42:22.177623] INFO: moduleinvoker: instruments.v2 运行完成[0.006914s].
[2021-04-02 22:42:22.183764] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-04-02 22:42:22.187866] INFO: moduleinvoker: 命中缓存
[2021-04-02 22:42:22.188909] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.00515s].
[2021-04-02 22:42:22.192200] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-04-02 22:42:22.196343] INFO: moduleinvoker: 命中缓存
[2021-04-02 22:42:22.197293] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.0051s].
[2021-04-02 22:42:22.200815] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-04-02 22:42:23.777289] INFO: dropnan: /y_2018, 210105/210561
[2021-04-02 22:42:27.288788] INFO: dropnan: /y_2019, 880725/884867
[2021-04-02 22:42:28.844307] INFO: dropnan: /y_2020, 936373/945961
[2021-04-02 22:42:29.287304] INFO: dropnan: /y_2021, 243506/245756
[2021-04-02 22:42:30.535126] INFO: dropnan: 行数: 2270709/2287145
[2021-04-02 22:42:30.545758] INFO: moduleinvoker: dropnan.v2 运行完成[8.344939s].
[2021-04-02 22:42:30.548662] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2021-04-02 22:42:33.352271] INFO: StockRanker预测: /y_2018 ..
[2021-04-02 22:42:36.345987] INFO: StockRanker预测: /y_2019 ..
[2021-04-02 22:42:42.265456] INFO: StockRanker预测: /y_2020 ..
[2021-04-02 22:42:48.376831] INFO: StockRanker预测: /y_2021 ..
[2021-04-02 22:42:56.128030] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[25.57935s].
[2021-04-02 22:42:56.200779] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-04-02 22:42:56.205520] INFO: backtest: biglearning backtest:V8.5.0
[2021-04-02 22:42:56.207095] INFO: backtest: product_type:stock by specified
[2021-04-02 22:42:56.364643] INFO: moduleinvoker: cached.v2 开始运行..
[2021-04-02 22:43:14.167723] INFO: backtest: 读取股票行情完成:3185582
[2021-04-02 22:43:21.461890] INFO: moduleinvoker: cached.v2 运行完成[25.09719s].
[2021-04-02 22:43:24.721797] INFO: algo: TradingAlgorithm V1.8.2
[2021-04-02 22:43:26.281301] INFO: algo: trading transform...
[2021-04-02 22:43:30.020512] INFO: algo: handle_splits get splits [dt:2019-05-17 00:00:00+00:00] [asset:Equity(1029 [002049.SZA]), ratio:0.9985391497612]
[2021-04-02 22:43:30.021982] INFO: algo: handle_splits get splits [dt:2019-05-17 00:00:00+00:00] [asset:Equity(4459 [002916.SZA]), ratio:0.8276928067207336]
[2021-04-02 22:43:30.023042] INFO: Position: position stock handle split[sid:1029, orig_amount:1700, new_amount:1702.0, orig_cost:41.97999961242901, new_cost:41.9187, ratio:0.9985391497612, last_sale_price:41.01000213623047]
[2021-04-02 22:43:30.023977] INFO: Position: after split: PositionStock(asset:Equity(1029 [002049.SZA]), amount:1702.0, cost_basis:41.9187, last_sale_price:41.06999969482422)
[2021-04-02 22:43:30.024839] INFO: Position: returning cash: 19.9751
[2021-04-02 22:43:30.025732] INFO: Position: position stock handle split[sid:4459, orig_amount:400, new_amount:483.0, orig_cost:116.13000495243514, new_cost:96.12, ratio:0.8276928067207336, last_sale_price:91.22003173828125]
[2021-04-02 22:43:30.026621] INFO: Position: after split: PositionStock(asset:Equity(4459 [002916.SZA]), amount:483.0, cost_basis:96.12, last_sale_price:110.21000671386719)
[2021-04-02 22:43:30.027472] INFO: Position: returning cash: 24.7283
[2021-04-02 22:43:30.071833] INFO: algo: handle_splits get splits [dt:2019-05-20 00:00:00+00:00] [asset:Equity(3661 [603656.SHA]), ratio:0.9932098984718323]
[2021-04-02 22:43:30.073239] INFO: Position: position stock handle split[sid:3661, orig_amount:2500, new_amount:2517.0, orig_cost:16.250026664769997, new_cost:16.1397, ratio:0.9932098984718323, last_sale_price:16.090002059936523]
[2021-04-02 22:43:30.074667] INFO: Position: after split: PositionStock(asset:Equity(3661 [603656.SHA]), amount:2517.0, cost_basis:16.1397, last_sale_price:16.200000762939453)
[2021-04-02 22:43:30.075661] INFO: Position: returning cash: 1.4691
[2021-04-02 22:43:30.218707] INFO: algo: handle_splits get splits [dt:2019-05-24 00:00:00+00:00] [asset:Equity(1801 [000661.SZA]), ratio:0.997334361076355]
[2021-04-02 22:43:30.220236] INFO: Position: position stock handle split[sid:1801, orig_amount:200, new_amount:200.0, orig_cost:306.00000050170996, new_cost:305.1843, ratio:0.997334361076355, last_sale_price:299.300048828125]
[2021-04-02 22:43:30.221353] INFO: Position: after split: PositionStock(asset:Equity(1801 [000661.SZA]), amount:200.0, cost_basis:305.1843, last_sale_price:300.1000061035156)
[2021-04-02 22:43:30.222348] INFO: Position: returning cash: 159.9917
[2021-04-02 22:43:30.305687] INFO: algo: handle_splits get splits [dt:2019-05-28 00:00:00+00:00] [asset:Equity(1587 [300567.SZA]), ratio:0.6615525484085083]
[2021-04-02 22:43:30.307205] INFO: Position: position stock handle split[sid:1587, orig_amount:3700, new_amount:5592.0, orig_cost:61.592434727822734, new_cost:40.7466, ratio:0.6615525484085083, last_sale_price:43.55000686645508]
[2021-04-02 22:43:30.308261] INFO: Position: after split: PositionStock(asset:Equity(1587 [300567.SZA]), amount:5592.0, cost_basis:40.7466, last_sale_price:65.83000183105469)
[2021-04-02 22:43:30.309164] INFO: Position: returning cash: 39.3762
[2021-04-02 22:43:30.430303] INFO: algo: handle_splits get splits [dt:2019-05-31 00:00:00+00:00] [asset:Equity(798 [000725.SZA]), ratio:0.991428554058075]
[2021-04-02 22:43:30.431776] INFO: algo: handle_splits get splits [dt:2019-05-31 00:00:00+00:00] [asset:Equity(608 [002278.SZA]), ratio:0.9932796955108643]
[2021-04-02 22:43:30.432877] INFO: Position: position stock handle split[sid:798, orig_amount:15100, new_amount:15230.0, orig_cost:3.5199999812953418, new_cost:3.4898, ratio:0.991428554058075, last_sale_price:3.4700002670288086]
[2021-04-02 22:43:30.433832] INFO: Position: after split: PositionStock(asset:Equity(798 [000725.SZA]), amount:15230.0, cost_basis:3.4898, last_sale_price:3.500000238418579)
[2021-04-02 22:43:30.434795] INFO: Position: returning cash: 1.9009
[2021-04-02 22:43:30.435776] INFO: Position: position stock handle split[sid:608, orig_amount:8600, new_amount:8658.0, orig_cost:7.210001281715539, new_cost:7.1615, ratio:0.9932796955108643, last_sale_price:7.390000343322754]
[2021-04-02 22:43:30.436740] INFO: Position: after split: PositionStock(asset:Equity(608 [002278.SZA]), amount:8658.0, cost_basis:7.1615, last_sale_price:7.439999580383301)
[2021-04-02 22:43:30.437621] INFO: Position: returning cash: 1.3719
[2021-04-02 22:43:30.552487] INFO: algo: handle_splits get splits [dt:2019-06-05 00:00:00+00:00] [asset:Equity(5149 [300015.SZA]), ratio:0.7651474475860596]
[2021-04-02 22:43:30.668537] INFO: algo: handle_splits get splits [dt:2019-06-11 00:00:00+00:00] [asset:Equity(576 [002819.SZA]), ratio:0.7677285075187683]
[2021-04-02 22:43:30.670071] INFO: Position: position stock handle split[sid:576, orig_amount:5900, new_amount:7685.0, orig_cost:23.900083827055415, new_cost:18.3488, ratio:0.7677285075187683, last_sale_price:18.080005645751953]
[2021-04-02 22:43:30.671152] INFO: Position: after split: PositionStock(asset:Equity(576 [002819.SZA]), amount:7685.0, cost_basis:18.3488, last_sale_price:23.549999237060547)
[2021-04-02 22:43:30.672159] INFO: Position: returning cash: 0.1512
[2021-04-02 22:43:30.744895] INFO: algo: handle_splits get splits [dt:2019-06-13 00:00:00+00:00] [asset:Equity(1831 [600535.SHA]), ratio:0.9818949699401855]
[2021-04-02 22:43:30.752048] INFO: Position: position stock handle split[sid:1831, orig_amount:5600, new_amount:5703.0, orig_cost:16.163751289843407, new_cost:15.8711, ratio:0.9818949699401855, last_sale_price:16.270000457763672]
[2021-04-02 22:43:30.753057] INFO: Position: after split: PositionStock(asset:Equity(1831 [600535.SHA]), amount:5703.0, cost_basis:15.8711, last_sale_price:16.57000160217285)
[2021-04-02 22:43:30.753966] INFO: Position: returning cash: 4.192
[2021-04-02 22:43:30.829044] INFO: algo: handle_splits get splits [dt:2019-06-17 00:00:00+00:00] [asset:Equity(2473 [002405.SZA]), ratio:0.6661044955253601]
[2021-04-02 22:43:30.830637] INFO: Position: position stock handle split[sid:2473, orig_amount:3100, new_amount:4653.0, orig_cost:23.89999963094366, new_cost:15.9199, ratio:0.6661044955253601, last_sale_price:15.79999828338623]
[2021-04-02 22:43:30.831781] INFO: Position: after split: PositionStock(asset:Equity(2473 [002405.SZA]), amount:4653.0, cost_basis:15.9199, last_sale_price:23.719999313354492)
[2021-04-02 22:43:30.832811] INFO: Position: returning cash: 14.6064
[2021-04-02 22:43:30.886310] INFO: algo: handle_splits get splits [dt:2019-06-18 00:00:00+00:00] [asset:Equity(3541 [002935.SZA]), ratio:0.6633859872817993]
[2021-04-02 22:43:31.004353] INFO: algo: handle_splits get splits [dt:2019-06-21 00:00:00+00:00] [asset:Equity(3466 [300003.SZA]), ratio:0.9928412437438965]
[2021-04-02 22:43:31.006014] INFO: algo: handle_splits get splits [dt:2019-06-21 00:00:00+00:00] [asset:Equity(1781 [300694.SZA]), ratio:0.9971303343772888]
[2021-04-02 22:43:31.007135] INFO: Position: position stock handle split[sid:3466, orig_amount:3700, new_amount:3726.0, orig_cost:20.700000866656293, new_cost:20.5518, ratio:0.9928412437438965, last_sale_price:22.19000244140625]
[2021-04-02 22:43:31.008155] INFO: Position: after split: PositionStock(asset:Equity(3466 [300003.SZA]), amount:3726.0, cost_basis:20.5518, last_sale_price:22.350000381469727)
[2021-04-02 22:43:31.009108] INFO: Position: returning cash: 15.0533
[2021-04-02 22:43:31.010067] INFO: Position: position stock handle split[sid:1781, orig_amount:2500, new_amount:2507.0, orig_cost:20.5600001456533, new_cost:20.501, ratio:0.9971303343772888, last_sale_price:20.849994659423828]
[2021-04-02 22:43:31.011063] INFO: Position: after split: PositionStock(asset:Equity(1781 [300694.SZA]), amount:2507.0, cost_basis:20.501, last_sale_price:20.90999984741211)
[2021-04-02 22:43:31.011974] INFO: Position: returning cash: 4.0618
[2021-04-02 22:43:31.179854] INFO: algo: handle_splits get splits [dt:2019-06-27 00:00:00+00:00] [asset:Equity(3646 [600505.SHA]), ratio:0.9931507110595703]
[2021-04-02 22:43:31.181389] INFO: Position: position stock handle split[sid:3646, orig_amount:7900, new_amount:7954.0, orig_cost:7.060011231919184, new_cost:7.0117, ratio:0.9931507110595703, last_sale_price:7.25]
[2021-04-02 22:43:31.182626] INFO: Position: after split: PositionStock(asset:Equity(3646 [600505.SHA]), amount:7954.0, cost_basis:7.0117, last_sale_price:7.299999713897705)
[2021-04-02 22:43:31.183647] INFO: Position: returning cash: 3.4985
[2021-04-02 22:43:31.480946] INFO: algo: handle_splits get splits [dt:2019-07-09 00:00:00+00:00] [asset:Equity(875 [002696.SZA]), ratio:0.992559552192688]
[2021-04-02 22:43:31.925748] INFO: algo: handle_splits get splits [dt:2019-07-26 00:00:00+00:00] [asset:Equity(4976 [002594.SZA]), ratio:0.9964784383773804]
[2021-04-02 22:43:32.259863] INFO: algo: handle_splits get splits [dt:2019-08-09 00:00:00+00:00] [asset:Equity(1163 [601066.SHA]), ratio:0.9897379875183105]
[2021-04-02 22:43:32.261346] INFO: Position: position stock handle split[sid:1163, orig_amount:5900, new_amount:5961.0, orig_cost:17.979999635264495, new_cost:17.7955, ratio:0.9897379875183105, last_sale_price:17.360004425048828]
[2021-04-02 22:43:32.262509] INFO: Position: after split: PositionStock(asset:Equity(1163 [601066.SHA]), amount:5961.0, cost_basis:17.7955, last_sale_price:17.540000915527344)
[2021-04-02 22:43:32.263710] INFO: Position: returning cash: 3.0144
[2021-04-02 22:43:38.159339] INFO: algo: handle_splits get splits [dt:2020-04-30 00:00:00+00:00] [asset:Equity(2750 [300187.SZA]), ratio:0.9605734348297119]
[2021-04-02 22:43:38.409271] INFO: algo: handle_splits get splits [dt:2020-05-14 00:00:00+00:00] [asset:Equity(4266 [002402.SZA]), ratio:0.9959128499031067]
[2021-04-02 22:43:38.410837] INFO: Position: position stock handle split[sid:4266, orig_amount:7900, new_amount:7932.0, orig_cost:14.879999190959037, new_cost:14.8192, ratio:0.9959128499031067, last_sale_price:14.620000839233398]
[2021-04-02 22:43:38.411951] INFO: Position: after split: PositionStock(asset:Equity(4266 [002402.SZA]), amount:7932.0, cost_basis:14.8192, last_sale_price:14.680000305175781)
[2021-04-02 22:43:38.413017] INFO: Position: returning cash: 6.155
[2021-04-02 22:43:38.558411] INFO: algo: handle_splits get splits [dt:2020-05-20 00:00:00+00:00] [asset:Equity(3659 [300529.SZA]), ratio:0.5224505662918091]
[2021-04-02 22:43:38.629016] INFO: algo: handle_splits get splits [dt:2020-05-22 00:00:00+00:00] [asset:Equity(67 [300347.SZA]), ratio:0.9965630769729614]
[2021-04-02 22:43:38.630491] INFO: Position: position stock handle split[sid:67, orig_amount:1200, new_amount:1204.0, orig_cost:83.79999592086348, new_cost:83.512, ratio:0.9965630769729614, last_sale_price:81.18999481201172]
[2021-04-02 22:43:38.631503] INFO: Position: after split: PositionStock(asset:Equity(67 [300347.SZA]), amount:1204.0, cost_basis:83.512, last_sale_price:81.47000122070312)
[2021-04-02 22:43:38.632452] INFO: Position: returning cash: 11.2474
[2021-04-02 22:43:38.784364] INFO: algo: handle_splits get splits [dt:2020-05-28 00:00:00+00:00] [asset:Equity(4407 [002216.SZA]), ratio:0.997463047504425]
[2021-04-02 22:43:38.785838] INFO: Position: position stock handle split[sid:4407, orig_amount:11500, new_amount:11529.0, orig_cost:24.17000437248919, new_cost:24.1087, ratio:0.997463047504425, last_sale_price:23.59000015258789]
[2021-04-02 22:43:38.786843] INFO: Position: after split: PositionStock(asset:Equity(4407 [002216.SZA]), amount:11529.0, cost_basis:24.1087, last_sale_price:23.649999618530273)
[2021-04-02 22:43:38.787721] INFO: Position: returning cash: 5.8776
[2021-04-02 22:43:38.861744] INFO: algo: handle_splits get splits [dt:2020-06-01 00:00:00+00:00] [asset:Equity(5145 [603195.SHA]), ratio:0.979168176651001]
[2021-04-02 22:43:38.863294] INFO: Position: position stock handle split[sid:5145, orig_amount:2900, new_amount:2961.0, orig_cost:179.4982833833451, new_cost:175.759, ratio:0.979168176651001, last_sale_price:178.61007690429688]
[2021-04-02 22:43:38.864415] INFO: Position: after split: PositionStock(asset:Equity(5145 [603195.SHA]), amount:2961.0, cost_basis:175.759, last_sale_price:182.41000366210938)
[2021-04-02 22:43:38.865369] INFO: Position: returning cash: 124.5913
[2021-04-02 22:43:39.041736] INFO: algo: handle_splits get splits [dt:2020-06-08 00:00:00+00:00] [asset:Equity(2338 [600521.SHA]), ratio:0.9031948447227478]
[2021-04-02 22:43:39.043158] INFO: Position: position stock handle split[sid:2338, orig_amount:15900, new_amount:17604.0, orig_cost:29.594088590490703, new_cost:26.7292, ratio:0.9031948447227478, last_sale_price:28.26999855041504]
[2021-04-02 22:43:39.044148] INFO: Position: after split: PositionStock(asset:Equity(2338 [600521.SHA]), amount:17604.0, cost_basis:26.7292, last_sale_price:31.299999237060547)
[2021-04-02 22:43:39.045043] INFO: Position: returning cash: 4.9439
[2021-04-02 22:43:39.116302] INFO: algo: handle_splits get splits [dt:2020-06-10 00:00:00+00:00] [asset:Equity(4761 [300818.SZA]), ratio:0.9940348267555237]
[2021-04-02 22:43:39.117775] INFO: Position: position stock handle split[sid:4761, orig_amount:5000, new_amount:5030.0, orig_cost:34.45011065044528, new_cost:34.2446, ratio:0.9940348267555237, last_sale_price:33.329986572265625]
[2021-04-02 22:43:39.118796] INFO: Position: after split: PositionStock(asset:Equity(4761 [300818.SZA]), amount:5030.0, cost_basis:34.2446, last_sale_price:33.529998779296875)
[2021-04-02 22:43:39.119665] INFO: Position: returning cash: 0.1617
[2021-04-02 22:43:39.201071] INFO: algo: handle_splits get splits [dt:2020-06-12 00:00:00+00:00] [asset:Equity(5180 [300504.SZA]), ratio:0.9922031760215759]
[2021-04-02 22:43:39.202451] INFO: algo: handle_splits get splits [dt:2020-06-12 00:00:00+00:00] [asset:Equity(1233 [000860.SZA]), ratio:0.997376561164856]
[2021-04-02 22:43:39.203453] INFO: Position: position stock handle split[sid:5180, orig_amount:7100, new_amount:7155.0, orig_cost:26.19000305593151, new_cost:25.9858, ratio:0.9922031760215759, last_sale_price:25.450008392333984]
[2021-04-02 22:43:39.204323] INFO: Position: after split: PositionStock(asset:Equity(5180 [300504.SZA]), amount:7155.0, cost_basis:25.9858, last_sale_price:25.64999771118164)
[2021-04-02 22:43:39.205173] INFO: Position: returning cash: 20.168
[2021-04-02 22:43:39.206028] INFO: Position: position stock handle split[sid:1233, orig_amount:2100, new_amount:2105.0, orig_cost:58.99000565899027, new_cost:58.8352, ratio:0.997376561164856, last_sale_price:57.029991149902344]
[2021-04-02 22:43:39.206891] INFO: Position: after split: PositionStock(asset:Equity(1233 [000860.SZA]), amount:2105.0, cost_basis:58.8352, last_sale_price:57.18000030517578)
[2021-04-02 22:43:39.207701] INFO: Position: returning cash: 29.8673
[2021-04-02 22:43:39.362711] INFO: algo: handle_splits get splits [dt:2020-06-18 00:00:00+00:00] [asset:Equity(1540 [300815.SZA]), ratio:0.9981574416160583]
[2021-04-02 22:43:39.718700] INFO: algo: handle_splits get splits [dt:2020-07-07 00:00:00+00:00] [asset:Equity(1949 [000652.SZA]), ratio:0.9940652847290039]
[2021-04-02 22:43:39.829902] INFO: algo: handle_splits get splits [dt:2020-07-10 00:00:00+00:00] [asset:Equity(4988 [600078.SHA]), ratio:0.9979798197746277]
[2021-04-02 22:43:39.831433] INFO: Position: position stock handle split[sid:4988, orig_amount:33300, new_amount:33367.0, orig_cost:4.810000546767833, new_cost:4.8003, ratio:0.9979798197746277, last_sale_price:4.940000534057617]
[2021-04-02 22:43:39.832533] INFO: Position: after split: PositionStock(asset:Equity(4988 [600078.SHA]), amount:33367.0, cost_basis:4.8003, last_sale_price:4.950000286102295)
[2021-04-02 22:43:39.833450] INFO: Position: returning cash: 2.0164
[2021-04-02 22:43:39.946017] INFO: algo: handle_splits get splits [dt:2020-07-15 00:00:00+00:00] [asset:Equity(4043 [000599.SZA]), ratio:0.9979550838470459]
[2021-04-02 22:43:39.947584] INFO: Position: position stock handle split[sid:4043, orig_amount:41000, new_amount:41084.0, orig_cost:5.000000601319017, new_cost:4.9898, ratio:0.9979550838470459, last_sale_price:4.880000114440918]
[2021-04-02 22:43:39.948642] INFO: Position: after split: PositionStock(asset:Equity(4043 [000599.SZA]), amount:41084.0, cost_basis:4.9898, last_sale_price:4.889999866485596)
[2021-04-02 22:43:39.949536] INFO: Position: returning cash: 0.0652
[2021-04-02 22:43:40.415372] INFO: algo: handle_splits get splits [dt:2020-07-31 00:00:00+00:00] [asset:Equity(2055 [688599.SHA]), ratio:0.9942097663879395]
[2021-04-02 22:43:40.416874] INFO: Position: position stock handle split[sid:2055, orig_amount:20400, new_amount:20518.0, orig_cost:17.43000138167114, new_cost:17.3291, ratio:0.9942097663879395, last_sale_price:17.17000389099121]
[2021-04-02 22:43:40.417895] INFO: Position: after split: PositionStock(asset:Equity(2055 [688599.SHA]), amount:20518.0, cost_basis:17.3291, last_sale_price:17.270000457763672)
[2021-04-02 22:43:40.418803] INFO: Position: returning cash: 13.8853
[2021-04-02 22:43:46.309913] INFO: Performance: Simulated 546 trading days out of 546.
[2021-04-02 22:43:46.312563] INFO: Performance: first open: 2019-01-02 09:30:00+00:00
[2021-04-02 22:43:46.313578] INFO: Performance: last close: 2021-04-01 15:00:00+00:00
[2021-04-02 22:43:53.537315] INFO: moduleinvoker: backtest.v8 运行完成[57.336553s].
[2021-04-02 22:43:53.538655] INFO: moduleinvoker: trade.v4 运行完成[57.407761s].