HFTrade是宽邦科技推出的致力于为用户提供便捷、功能强大的高频量化交易策略编写、回测分析、模拟测试和实盘交易的工具。
股票、基金、期货,可转债,未来会支持期权、债券、两融
日线、分钟、Tick、逐笔
名称 | 说明 |
---|---|
initialize | 策略初始化函数,只触发一次。可以在该函数中初始化一些变量,如读取配置等 |
before_trading | 策略盘前交易函数,每日盘前触发一次。可以在该函数中一些启动前的准备,如订阅行 |
更新时间:2024-06-18 10:48
更新时间:2024-06-18 06:16
更新时间:2024-06-18 06:15
\
更新时间:2024-06-12 06:06
短期涨跌的预测相比长期更容易,但覆盖交易成本后再获利的难度更大。所以在高频交易场景,机器学习更适合有限状态下的订单执行。而对于长期的预测,机器学习的训练目标可以不是评估在给定状态下的每股总利润或买入行为的回报,而是监控在该状态下买入与在所有可能状态下买入的相对盈利能力。
Michael Kearns在2010年的关于讨论机器学习在高频交易应用的论文中,提出了很多机器学习应用与高频交易的限制,很多思考放到现在都值得我们去学习。机器学习在高频交易中主要有两个方向,一是订单的执行优化,二是高频涨跌方向的预测。这两者本质的区别是执行优化是在一个确定性的空间寻找最优解,即交易
更新时间:2024-06-12 05:53
无论你如何看待数据科学这门学科,都不能轻易忽视数据的重要性,以及我们分析、组织和理解数据的能力。Glassdoor 网站收集了大量的雇主和员工的反馈数据,发现在美国“25个最好的工作职位清单”中排名第一的是数据科学家。尽管排名摆在那里,但毫无疑问,数据科学家们研究的具体工作内容仍会不断增加。随着机器学习等技术变得越来越普遍,像深度学习这样的新兴领域获得了来自研究人员、工程师以及各大公司更多的关注,数据科学家会继续站在创新浪潮之巅并且推动技术的不断发展。
尽管拥有强大的编码能力非常重要,但数据科学也并非全部都是关于软件工程的(事实上,能够熟练掌握python已经足够很好的开展工作了)。数据科学
更新时间:2024-06-12 05:51
1989年发表的论文《The Fundamental Law of Active Management》及其随后的相关论文揭示了寻求主动投资的alpha
收益的数量化关系,这为主动组合投资管理带来一套令人信服的分析框架,这个数量化关系很好揭示了数量化技术(量化投资)可以如何或者应该如何切入投资管理领域。
和被动组合管理(passive porfolio management)相比,主动组合管理(active porfolio management)更显投资水平的能力,或者说运气。被动投资力求完全复制相应的基准成分股及其权重,所以每当某指数做成分股的调整时,新入选的股票
更新时间:2024-06-12 02:56
人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。
机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|
更新时间:2024-06-11 03:20
更新时间:2024-06-07 10:55
高频动量策略与主观超短交易
\
https://www.bilibili.com/video/BV1eG4y147Ki/
\
/wiki/static/upload/70/70110d2a-6075-45b4-ad3c-618340dc720f.pdf
\
更新时间:2024-06-07 10:55
此为0527Meetup直播策略讲解,视频详见2021-AI量化Meetup导览
https://bigquant.com/experimentshare/edab29d0ffad4e039a9c1f5fed1fa870
\
更新时间:2024-06-07 10:55
【此文档为旧版策略】具体可参考新版文档:
https://bigquant.com/wiki/doc/103-ai-LpsqDhu8mG
https://bigquant.com/experimentshare/dd9cff01459a41f9be40d7e660164795
\
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
AI量化Meetup 2021年1月28日期问题,配合视频更容易理解。视频详见:
https://bigquant.com/experimentshare/5dd6b4f7a29d4c5d827aeeff05816cfd
\
更新时间:2024-06-07 10:55
2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb
利用市场信息进行量化投资主要涉及以下步骤:
更新时间:2024-06-07 10:55
\
更新时间:2024-06-07 10:55
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-07 10:55
如何利用60分钟K线来合成120分钟K线呢?
https://www.bilibili.com/video/BV1d54y1d7tv/
https://bigquant.com/experimentshare/4e081ef44d3246f48551c6eee74f629d
\
更新时间:2024-06-07 10:55
【旧版使用说明】此文档为旧版本,相关文档可参考:
https://bigquant.com/wiki/doc/126-KkS3pYVIAH
20210624 Meetup 策略案例
https://bigquant.com/experimentshare/f235e9ce26dc42b9ae9fb57ca6574bf1
\
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
\
更新时间:2024-06-07 10:55
如何开发带有反馈系统的策略?
比如今天买明天卖的策略,根据股票每天的收益情况,反馈给策略,进行参数调整,这样就可以让策略每天都是新鲜的,并且是真正贴合市场的活的策略。
模型动态更新
深度强化学习
[1] Deep Reinforcem
更新时间:2024-06-07 10:55
高频回测模块择时策略
\
https://www.bilibili.com/video/BV1S44y1y7dc?p=2&share_source=copy_web
8月19日Meetup策略模板:
[https://bigquant.com/experimentshare/a6bae485ffcc47819510b788ddfad338](https://bigquant.com/experime
更新时间:2024-06-07 10:55