高频交易

高频交易是金融市场上的闪电般的交易活动,通过先进的算法和极速的计算机网络,在毫秒甚至微秒级别完成买卖决策,追求微小但稳定的利润。这种交易依赖复杂的数学模型,对市场数据进行实时分析并快速做出反应。由于交易速度极快,高频交易能在极短时间内捕捉到市场上的微小变动并从中获利,但也因其高速和大规模的特性,有时可能加大市场的波动性和系统风险。高频交易在现代金融市场中占据重要地位,既是技术进步的产物,也带来了市场监管和风险管理的新挑战。

2023-AI量化Meetup

\

更新时间:2025-04-15 07:19

如何开发带有反馈系统的策略?

问题

如何开发带有反馈系统的策略?

解答

比如今天买明天卖的策略,根据股票每天的收益情况,反馈给策略,进行参数调整,这样就可以让策略每天都是新鲜的,并且是真正贴合市场的活的策略。

模型动态更新


{w:100}深度强化学习


基于深度强化学习的股票交易

[1] Deep Reinforcem

更新时间:2025-04-15 07:19

高频回测模块择时策略

问题

高频回测模块择时策略

\

视频

https://www.bilibili.com/video/BV1S44y1y7dc?p=2&share_source=copy_web

策略源码

8月19日Meetup策略模板:

[https://bigquant.com/experimentshare/a6bae485ffcc47819510b788ddfad338](https://bigquant.com/experime

更新时间:2025-04-15 07:19

互信息计算

策略案例

https://bigquant.com/experimentshare/6dbc5eb845fe48d0a8b61e60785cf762

\

更新时间:2025-04-15 07:19

高频回测模块择时策略

8月19日Meetup策略模板:

https://bigquant.com/codesharev2/44350f73-6992-4f03-ab1e-59a62936fbdd

\

更新时间:2025-04-15 07:19

超参寻优调参顺序

策略案例


https://bigquant.com/experimentshare/fe8ec83484ca44148602d39a58545d75

\

更新时间:2025-04-15 07:19

高频期货因子分析

此为0527Meetup直播策略讲解,视频详见2021-AI量化Meetup导览


https://bigquant.com/experimentshare/edab29d0ffad4e039a9c1f5fed1fa870

\

更新时间:2025-04-15 07:19

按天标注

策略案例

https://bigquant.com/experimentshare/644652453c624f34a027c192e4f8703a

\

更新时间:2025-04-15 07:19

2021-AI量化Meetup导览

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}导语

2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me

更新时间:2025-04-15 07:19

分钟因子加工

https://bigquant.com/experimentshare/8671700b78014d6cbe44261ba23820f9

\

更新时间:2025-04-15 07:19

时区瑕疵策略

视频讲解

查看视频

策略源码

https://bigquant.com/codeshare/621dce87-bd66-43b2-b08d-ad986eeb3135

\

更新时间:2025-04-15 07:19

高质量AI量化策略

【此文档为旧版策略】具体可参考新版文档:

https://bigquant.com/wiki/doc/103-ai-LpsqDhu8mG

https://bigquant.com/experimentshare/dd9cff01459a41f9be40d7e660164795

\

更新时间:2025-04-15 07:19

回测引擎常用功能示例

{{membership}}

https://bigquant.com/codeshare/ccb0fdad-c4da-424e-ace1-dd57ace94cec

\

更新时间:2025-04-15 07:19

日线策略信号进行日内择时

【旧版使用说明】此文档为旧版本,相关文档可参考:

https://bigquant.com/wiki/doc/126-KkS3pYVIAH

20210624 Meetup 策略案例

https://bigquant.com/experimentshare/f235e9ce26dc42b9ae9fb57ca6574bf1

\

更新时间:2025-04-15 07:19

简单网格交易日内择时

AI量化Meetup 2021年1月28日期问题,配合视频更容易理解。视频详见:

2021-AI量化Meetup导览

策略案例

https://bigquant.com/experimentshare/5dd6b4f7a29d4c5d827aeeff05816cfd

\

更新时间:2025-04-15 07:19

高频动量策略与主观超短交易

分享主题

高频动量策略与主观超短交易

\

视频回放

https://www.bilibili.com/video/BV1eG4y147Ki/

\

直播资料

/wiki/static/upload/70/70110d2a-6075-45b4-ad3c-618340dc720f.pdf

\

更新时间:2025-04-15 07:19

59th Meetup

本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb

因子挖掘

如何利用市场信息?

利用市场信息进行量化投资主要涉及以下步骤:

  1. 数据收集:首先,需要收集和整理市场数据,包括股票价格、交易量、基本面数据、新闻、宏观经济数据等。这些信息可以从各种数据供应商或公开数据源获取。
  2. 数据预处理:对收集到的数据进行清洗和预处理,处理缺失值、异常值、重复值等,保证数据的准确性和完整性。
  3. 特征工程:根据投资策略和模型需求,进行特征工程,提取有价值的特征和信号。
  4. 模型构建:选择合适的模型(如回归模型、机器学习模型、深度学习模型

更新时间:2025-04-15 07:19

2022-AI量化Meetup导览

\

更新时间:2025-04-15 07:19

高频回测算子使用(HFTrade)

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-04-15 07:19

如何将60分钟K线合成120分钟K线

问题

如何利用60分钟K线来合成120分钟K线呢?

视频

https://www.bilibili.com/video/BV1d54y1d7tv/

策略源码

https://bigquant.com/experimentshare/4e081ef44d3246f48551c6eee74f629d

\

更新时间:2025-04-15 07:19

49th Meetup

Q1-@james:有什么另类的标注可以推荐下?

https://bigquant.com/wiki/doc/-0kcMgSnQXw

https://bigquant.com/wiki/doc/rengongzhineng-xilie-ershijiu-shouyi-linglei-biaoqian-zhengquan-fuben-xRMNFmmg00

{w:100}{w:100}{w:100}

更新时间:2025-04-15 07:19

用LSTM神经网络模型训练期货高频数据

高频交易经常被提起,却始终蒙着一层神秘面纱,仿佛那只是金字塔尖那一小撮人的玩物。今天我们就从期货高频数据下手,去揭开神秘面纱的一角,并尝试搭建神经网络模型对高频数据进行预测,抛砖引玉,希望能让对金融数据分析,量化交易,人工智能感兴趣的朋友有所收获。我们已经将本文的全部源数据+源代码+python环境打包好,做到开箱即用, 文末有获取方式,欢迎大家下载自己动手继续学习和研究。

先看我们最终的模型结果,在训练集和测试集上的表现:

下面开始探索数据。

交易时间

以本文要研究的螺纹钢(RB)为例, 与股票不同,期货不仅在工作日白天交易,很多品种还有夜盘, 每个交易日就是从夜盘开始计算的。

更新时间:2025-04-14 03:45

股票市场高频交易与期权做市成本

文章背景

高频交易(HFT)通过高速交易和复杂的算法在金融市场中迅速崛起,显著改变了电子市场的运作方式。尽管已有大量文献研究了HFT对单一市场质量的影响,但很少有研究探讨HFT在不同资产类别(如股票和期权)之间的跨市场影响。本文填补了这一空白,研究了股票市场中的HFT活动如何影响期权市场的流动性。

研究方法与数据

研究使用了2009年纳斯达克HFT数据和期权价格报告机构(OPRA)的交易数据,覆盖了103只股票。主要变量包括HFT的交易量、期权市场的买卖价差、期权的隐含波动率、Delta、Gamma和Vega等。此外,还使用了CBOE的开收盘期权数据、Refinitiv的五分

更新时间:2025-03-03 02:51

【平台使用】为啥order_percent()有错误?(HFTrade (高频 回测/模拟/实盘) (v2) 中)

  • your performance may suffer as PyTables will pickle object types that it cannot
  • map directly to c-types [inferred_type->mixed,key->block3_values] [items->Index(['instrument', 'name', 'suspend_type', 'suspend_reason', 'suspended'], dtype='object')]
  • pytables.to_hdf(
  • [2023-11-09 19:42:22

更新时间:2025-02-16 01:26

【其他】如何把次日开盘数据加入策略?

如何把次日开盘数据加入策略?比如竞价金额,竞价成交量。开盘涨幅。

更新时间:2025-02-16 01:24

分页第1页第2页第3页第4页第5页第6页
{link}