算法

算法在金融领域的应用已经变得日益重要。它们是一系列精确定义的指令,旨在通过处理和分析数据来解决特定问题。在金融中,算法的运用广泛而深入,从简单的计算到复杂的交易决策,其影响力无处不在。 例如,高级算法能够迅速分析市场趋势,为投资者提供有价值的信息,这远比人类手工操作来得高效和准确。算法的使用也降低了交易成本,增加了市场的流动性,通过自动执行交易,算法能够在毫秒级别内对市场变化作出反应。 更进一步,机器学习算法正在改变风险管理的方式,帮助金融机构更准确地识别信贷风险,防止欺诈行为。算法交易的兴起也使得市场更加高效,它能够在极短的时间内进行大量的交易操作,从而捕捉到那些短暂的市场机会。 然而,依赖算法也带来了挑战和风险,包括数据的不可靠、市场的波动性增大以及对技术支持的过度信赖。综上所述,从提高效率、降低风险到发掘新的市场机会,算法无疑已经成为现代金融不可或缺的一部分。

笔试

#102

def func(a): 
''' 
a: 输入数组,已经排好序 
返回值:出现次数最多的元素,如果有多个,输出最早出现的 
''' 

#如果数组为空,返回None 
if not a: 
    return None 
#如果数组不为空,定义相关属性 
max_element = a[0] #记录最大出现次数的元素 
max_count = 1 #记录最大出现次数 
current_count = 1 #记录当前元素的出现次数 
current_element = a[0] #记录当前正在计数的元素

#遍历数组
for i in range(1, len(a)):

更新时间:2024-06-21 13:13

平台常用AI机器学习模型

导语

BigQuant平台会不断封装机器学习算法策略,方便用户直接使用策略生成器开发策略,降低策略开发难度。本文对BigQuant平台上策略生成器已经支持的机器学习模型进行简单介绍。


目前,BigQuant策略研究平台支持的机器学习模型有分类模型、回归模型、排序模型和聚类模型四类。

常用AI机器学习模型

分类模型

分类模型主要包含以下模型:

模型名称 模块名称
线性分类 M.logistic_regression.
线性随机梯度下降分类 M.linear_sgd_classifier

更新时间:2024-06-15 07:29

Deep Learning with Python 终于等到你!

年初就一直在等啦

终于等到这本书

分享一下


此书的代码下载地址:https://github.com/fchollet/deep-learning-with-python-notebooks

![](/community/uploads/default/original/3X/c/c/cc94b84a373c66d820177c480765c8ec2467c73d

更新时间:2024-06-12 06:16

Word2Vec介绍:直观理解skip-gram模型

什么是Skip-gram算法

Skip-gram算法就是在给出目标单词(中心单词)的情况下,预测它的上下文单词(除中心单词外窗口内的其他单词,这里的窗口大小是2,也就是左右各两个单词)。

以下图为例:

![](data:image/svg+xml;utf8,<svg%20xmlns='[http://www.w3.org/2000/svg' width='1124' height='354]

更新时间:2024-06-12 06:06

AI选股中回归、分类、排序算法的构建流程

导语

【旧版模块】,该文档为旧版。新模板详见:

https://bigquant.com/wiki/doc/102-ai-hXNHGsyWzS

在阅读了学院关于可视化模板教程后,相信你已经掌握了平台上的模块使用方法。本文将以XGBoost模型为例,介绍回归、排序、分类的不同之处。在文末,你可以克隆该算法自行研究、学习

首先我们明确一下算法在机器学习中的地位。一般来说,机器学习有三个要素:数据、算法和模型

  • 数据是场景的描述,包括输入和输出。
  • 算法

更新时间:2024-06-11 02:53

基于随机森林模型的智能选股策略

导语

机器学习已经成为量化策略设计中的一大利器,了解各种机器学习算法的原理、特点、优劣,对于量化建模有着极大的帮助。因此,本系列【专题研究】介绍几种在资本市场中非常流行的机器学习算法及其在选股方面的相应应用,希望能对大家有所帮助。


随机森林是当前使用最广泛的机器学习集成算法之一。由于其简单灵活、不容易过拟合、准确率高的特性,随机森林在很多应用中都体现了较好的效果。

本文从单棵决策树讲起,逐步解释了随机森林的工作原理,然后将随机森林预测应用于二级市场,介绍了基于随机森林模型的智能选股策略。

什么是随机森林

随机森林是一种集成算法(Ensemble

更新时间:2024-06-08 13:08

三因子线性模型(包含滚动训练)

{{membership}}

https://bigquant.com/codeshare/37d36e41-2184-4342-b581-9561f199eeec

\

更新时间:2024-06-07 10:55

量化交易到底是怎么赚钱的

在这个数据驱动的时代,量化交易不仅是金融领域的革命,更是智慧投资的未来。

通过精确的数学模型和强大的算法,洞察市场动态,捕捉那些传统交易方法难以觉察的盈利机会。

量化交易赚钱的核心包括以下要点:

1 市场分析与策略开发

量化交易的核心在于市场分析和策略开发。这包括使用历史数据来测试和验证交易策略的有效性。

例如,通过回溯测试(backtesting),交易员可以评估一个策略在过去市场条件下的表现。

这种方

更新时间:2024-06-07 10:48

量化交易模型及策略2023版

量化交易利用数学和统计学方法来分析市场并执行交易的过程,是现代金融的一个重要组成部分。量化模型的目的是通过算法自动识别并利用市场中的规律和机会,用以获取更多收益。

量化交易模型的一般由以下几个部分组成:

1 数据处理模型: 量化交易的基石是数据。这包括了从历史价格、成交量到公司财报、宏观经济指标等各类数据。对这些数据的收集、清洗和处理是构建有效模型的首要步骤。**[BigQuant策略编写平台](http

更新时间:2024-06-07 10:48

五因子模型公式及应用

五因子模型是由Eugene Fama和Kenneth French提出的资产定价模型。

该模型在其先前的三因子模型的基础上,增加了两个新的因子:盈利能力和投资风格因子。

模型旨在更全面地解释股票回报,并在学术界和实务界都获得了广泛的关注。

  1. 市场风险因子(Market Risk Factor)

资本资产定价模型(CAPM)中的核心因子,代表市场整体的风险溢价,通常用市场超额回报表示,计算公式为:

更新时间:2024-06-07 10:48

DNN算法实现股票预测

新版本暂无深度学习可视化模块

导语

在阅读了 深度学习的简要介绍后,本文将介绍深度学习DNN模型及其在量化投资领域中的应用。

深度学习在量化领域的应用

机器学习作为人工智能的核心,其传统算法在解决很多问题上都表现出了高效性。随着近些年数据处理技术上的进步和计算能力的提升,深度学习得以在很多问题上也大放光彩,成为近一段时间互联网、金融等领域的大热门。

在量化投资领域,机器学习尤其是由统计学延伸的各种算法一直以来都被尝试应用在选股、择时等策略的开发上,随着深度学习在其他领域上的突破,其在自动化交易甚至投资策略的自开发自

更新时间:2024-05-21 07:27

AI量化技术

AI量化领域结合了人工智能(AI)、机器学习(ML)以及量化金融的技术和方法。这一领域的目标是使用算法和计算模型来分析大量金融数据,从而做出投资决策或提高交易效率。

一些在AI量化领域重要技术和方法,以及在金融领域的应用:

  1. 机器学习算法:机器学习算法是AI量化领域的核心。它们包括监督学习、非监督学习和强化学习。
    • 监督学习,如支持向量机(SVM)、神经网络、决策树等,用于预测或分类任务,如股价预测、信用评分。
    • 非监督学习,如聚类、主成分分析(PCA)等,用于发现数据中的模式和关系,如市场细分、异常检测。
    • 强化学习,如Q学习

更新时间:2024-05-20 06:58

适合初学者的 10 大机器学习算法

英国数学家、计算机科学家、逻辑学家和密码分析家艾伦·图灵推测机器:

“这就像一个学生从他的老师那里学到了很多东西,但在他自己的工作中增加了很多东西。发生这种情况时,我觉得人们有义务将机器视为显示智能。”

举一个机器学习影响的例子,Man group 的 AHL Dimension 计划是一个价值 51 亿美元的对冲基金,部分由 AI 管理。成立后,到 2015 年,其机器学习算法为基金贡献了一半以上的利润,尽管其管理的资产要少得多。

[ ![交易中的机器学习{w:100}{w:100}{w:100}](https://d1rwhvwstyk9gu.cloudfront.net/2

更新时间:2024-05-20 06:20

Machine Learning is Fun! — 全世界最简单的机器学习入门指南

你是否曾经听到过人们谈论机器学习,而你却对其含义只有一个模糊的概念呢?你是否已经厌倦了在和同事对话时只能点头呢?现在,让我们一起来改变这个现状吧!

这篇指南是为那些对机器学习感兴趣,但又不知从哪里开始的人而写的。我猜有很多人曾经尝试着阅读机器学习的维基百科词条,但是读着读着倍感挫折,然后直接放弃,希望能有人给出一个更直观的解释。本文就是你们想要的东西。

本文的写作目标是让任何人都能看懂,这意味着文中有大量的概括。但是那又如何呢?只要能让读者对机器学习更感兴趣,这篇文章的任务也就完成了。

什么是机器学习?

机器学习是一种概念:不需要写任何与问题有关的特定代码,泛型算法(Gene

更新时间:2024-05-20 03:18

基于XGBoost模型的智能选股策略

旧版声明

本文为旧版实现,供学习参考。

模版策略

导语

上篇报告介绍了集成学习里Bagging方法的代表算法随机森林,本文将着眼于另一种集成学习方法:Boosting,并深入介绍Boosting里的“王牌” XGBoost 模型。最后,以一个实例介绍XGBoost模型在智能选股方面的应用。


Boosting V.S. Bagging

作为集成学习的两大分支,Boosting和Bagging都秉持着“三个臭皮匠顶个诸葛亮”的想法,致力于将

更新时间:2024-05-20 02:09

机器学习模型可解释的重要及必要性

导语

不管你是管理自己的资金还是客户资金,只要你在做资产管理,每一步的投资决策都意义重大,做技术分析或基本面分析的朋友很清楚地知道每一个决策的细节,但是通过机器学习、深度学习建模的朋友可能就会很苦恼,因为直接产出决策信号的模型可能是个黑盒子,很难明白为什么模型会产出某一个信号,甚至很多保守的私募基金把模型的可解释性放入了事前风控。其实,模型的可解释性是很容易做到的,难点在于研究员是否对模型有深入的思考和理解。

介绍

机器学习领域在过去十年中发生了显著的变化。从一个纯粹的学术和研究领域方向开始,我们已经看到了机器学习在各个领域都有着广泛的应用,如零售,技术,医疗保健,科学等等。

更新时间:2024-05-20 02:09

时间序列预测(一):AR、MA模型介绍

旧版声明

本文为旧版实现,供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


数据读取参考:

[https://bigquant.com/wiki/doc/dai-PLSbc1SbZX#h-%E8%AF%BB%E5%8F%96%E6%95%B0%E6%8D%AE](https://bigquant.com/wiki/doc/dai-PLSbc1SbZX#h-%E8%AF%BB%E5%8F%96%E6%95%B0%E6%8

更新时间:2024-05-20 02:09

基于DNN模型的智能选股策略

导语

这是本系列专题研究的第六篇:基于DNN模型的深度学习智能选股策略。本文简单介绍了和DNN相关的原理,并举了一个实例,具体展示了如何应用以及应用的结果。


DNN原理介绍

神经元

神经网络的每个单元结构如下:

图1.神经元结构其对应公式如下: ![](/wiki/api/attachments.redirect?id=786ada84-4578-45b9-98a9-a281762597d

更新时间:2024-05-20 02:09

【深度强化学习#1】Deep Mind× UCL 2021年强化学习课程第12讲

第12讲:深度强化学习#1 研究工程师Matteo Hessel讨论了深度RL的实际考虑和算法,包括如何使用自区分(即Jax)实现这些。

https://www.youtube.com/watch?v=cVzvNZOBaJ4

/wiki/static/upload/4f/4f1a9d24-39d7-4f68-8a30-989d65e8c453.pdf

\

更新时间:2024-05-20 02:09

基于LSTM模型的智能选股策略

旧版声明

本文为旧版实现,供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

导语

这是本系列专题研究的第五篇:基于长短期记忆网络LSTM的深度学习因子选股模型。LSTM作为改进的RNN(循环神经网络),是一种非常成熟的能够处理变化的序列数据的神

更新时间:2024-05-20 02:09

深度学习模型介绍

导语

BigQuant平台不仅支持传统机器学习模型,同时还对深度学习模型模块进行了封装,方便用户直接使用策略生成器开发策略,降低策略开发难度。本文对BigQuant平台上策略生成器已经支持的深度学习模块进行简单介绍。


深度学习模型通过功能层进行积木式拼接,典型的模型构架如下: 通常模型由输入层中间层输出层组成。中间层包括卷积层、池化层、噪声层、循环层和激活层等。输出层通常是一个全连接层(Dens

更新时间:2024-05-20 02:09

基于一维CNN模型的智能选股策略

导语

这是本系列专题研究的第四篇:基于卷积神经网络CNN的深度学习因子选股模型。卷积神经网络(Convolutional Neural Network, CNN),是计算机视觉研究和应用领域中最具影响力的模型之一。同样,如果将时间看作一个空间维度,类似于二维图像的高度或宽度,CNN也可以对时间序列处理产生令人惊喜的效果。本文首先大致介绍了CNN的原理,然后详细解释了一维CNN模型如何进行应用于时间序列并进行特征选取,最后以一个实

更新时间:2024-05-20 02:09

StockRanker模型可视化

导语

本文介绍了如何用BigQuant的策略生成器进行StockRanker模型可视化。


使用StockRanker模型

在策略生成器中,可以直接菜单化操作的方式新建一个StockRanker实验,通过plot_model我们可以看到StockRanker模型是什么样子的,这样就能够完全透明的将模型可视化的展示出来,包括结构和参数等信息。

# m6 = M.stock_ranker_train.v2
m6.plot_model()

一般情况下AI机器在大量数据上训练出来的模型会远比人做出来的复杂,这也是AI有更好的效果的原因之一。

更新时间:2024-05-16 06:35

【历史文档】算子样例-机器学习

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 07:49

多元回归模型

请教一下,用1000多个股票一年的收益率数据和20个因子做多元回归模型,这里有多只股票和多个日期,应该要怎么处理呢?如何预测股票收益率?

更新时间:2023-11-27 06:10

分页第1页第2页第3页
{link}