本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 07:17
\
机器学习的研究领域包括有监督学习(Supervised Learning),无监督学习(Unsupervised Learning),半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)等诸多内容。针对有监督学习和半监督学习,都需要一定数量的标注数据,也就是说在训练模型的时候,全部或者部分数据需要带上相应的标签才能进行模型的训练。但是在实际的业务场景或者生产环境中,工作人员获得样本的成本其实是不低的,甚至在某些时候是相对较高的,那么如何通过较少成本来获得较大价值的标注数据,进一步地提升
更新时间:2024-05-20 06:19
回归是一种挖掘因变量和自变量之间关系的技术。它经常出现在机器学习中,主要用于预测建模。在本系列的最后一部分中,我们将范围扩大到涵盖其他类型的回归分析及其在金融中的用途。
简单的线性回归允许我们研究两个连续变量之间的关系——一个自变量和一个因变量。
简单线性回归方程的一般形式如下:
其中 (β_{0}) 是截距,(β_{1}) 是斜率,(ϵ_{i}) 是误差项。在这个等
更新时间:2024-05-20 03:17
通过文章《什么是机器学习》我们大概知晓了机器学习,那么机器学习里面究竟有多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。
在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即 线性回归 和 逻辑回归 。
线性回归就是我们前面说过的房价求解问题
更新时间:2024-05-20 02:09
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 02:00
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 02:00
#逻辑回归
这也称为 logit 回归。逻辑回归是一种基于过去数据预测事件二元结果的分析方法。
当因变量是定性的并且取二进制值时,它被称为二分变量。
如果我们使用线性回归来预测这样的变量,它将产生 0 到 1 范围之外的值。此外,由于二分变量只能取两个值,残差不会围绕预测线呈正态分布。
Logistic 回归是一种非线性模型,它产生一条逻辑曲线,其中值限制为 0 和 1。
将此概率与阈值 0.5 进行比较,以决定将数据最终分类为一个类别。因此,如果一个类的概率大于 0.5,则将其标记为 1,否则标记为 0。
金融中逻辑回归的用例之一是它可以用来预测股票的表现。
#分位数回归
更新时间:2023-10-09 07:12
本文主要有以下几点改进: 1.特征:加入新特征,beta,macd,willr等。 2.模型:使用随机森林,其中树的个数限制为15,树的最大深度为25,防止过拟合。使用回归算法而不是分类算法。 3.标注:使用(卖出价格-买入价格)/ 买入价格作为标签。 4.回测:股票资金分配,使得排名靠前的股票能分配到更多资金投入,加入止损策略(跌破3%止损)。
T.norm([1 / math.exp(i) for i in range(0, stock_count)]) #[0.3391,0.2139,0.1695,0.1460,0.1312]
更新时间:2022-11-20 03:34
更新时间:2021-11-30 02:54
机器学习里面究竟有多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。
在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即 线性回归 和 逻辑回归 。
线性回归就是我们前面说过的房价求解问题。如何拟合出一条直线最佳匹配我所有的数据?一般使用“最小二乘法”来求解。“最小二乘法”的思想是
更新时间:2021-08-18 06:37
更新时间:2021-07-30 08:12
更新时间:2021-07-30 07:26
更新时间:2021-07-30 07:26