数据预处理

数据预处理在金融领域扮演着至关重要的角色。它是金融分析和模型构建的基石,直接关系到投资策略、风险控制以及市场分析等决策的质量。通过对原始数据进行清洗、转换和标准化等操作,数据预处理能够消除异常值、填补缺失数据、平滑噪声,从而使数据更加规整和一致,提高分析的准确性和可靠性。此外,数据预处理还能够将不同来源、不同格式的数据整合到一起,为后续的金融建模和量化分析提供坚实的数据基础。在竞争激烈的金融市场中,有效的数据预处理能够帮助金融机构快速洞察市场变化,做出明智的投资决策,从而获取更大的经济效益。

自定义数据进行因子分析demo

https://bigquant.com/experimentshare/28a454b6532144eb819a78efae160768

\

更新时间:2022-02-21 11:25

华泰人工智能系列之十二:人工智能选股之特征选择-华泰证券-20180725

摘要

特征选择是人工智能选股策略的重要步骤,能够提升基学习器的预测效果

特征选择是机器学习数据预处理环节的重要步骤,核心思想是从全体特征中选择一组优质的子集作为输入训练集,从而提升模型的学习和预测效果。我们将特征选择方法应用于多因子选股,发现特征选择对逻辑回归_6m、XGBoost_6m基学习器的预测效果有一定提升。我们以全A股为股票池,以沪深300和中证500为基准,构建行业中性和市值中性的选股策略。基于F值和互信息的方法对于逻辑回归_6m、XGBoost_6m、XGBoost_72m基学习器的回测表现具有明显的提升效果。

**随着入选特征数的增加,模型预测效果先上升后下

更新时间:2021-11-26 07:28

CTA程序化交易实务研究之六:基于机器学习的订单簿高频交易策略-民生-131211

/wiki/static/upload/7e/7e6629bc-ac8d-42ad-85a0-c74ecff7229b.pdf

\

更新时间:2021-11-12 11:39

机器学习新手十大算法之旅

作者:James Le 编译:caoxiyang


在机器学习中,有一个叫做“世上没有免费午餐”的定理(NFL)。简而言之,我们无法找到一个放之四海而皆准的最优方案,这一点对于监督学习(即预测建模)尤为重要。例如,你不能说神经网络总是比决策树好,反之亦然。因为其中有很多因素在起作用,比如数据集的大小和结构。

因此,您应该针对您的问题尝试多种不同的算法,同时,保留一组数据,即“测试集”来评估性能并选

更新时间:2021-08-24 05:46

lightGBM_AI选股

https://bigquant.com/experimentshare/2fbb2629dcb0450bbf72e224835b4957

\

更新时间:2021-07-30 09:11

回归、分类模型构建

导语

回归、分类和排序是我们经常遇到的问题场景。本文主要介绍如何实现回归和分类两类问题的模型构建。

首先我们明确一下算法在机器学习中的地位。一般来说,机器学习有三个要素: 数据、算法和模型

  • 数据 是场景的描述,包括输入和输出。
  • 算法 是得到模型的过程,狭义上说,特指机器学习算法,如传统线性回归、树和支持向量机以及深度学习; 广义上说,从输入数据到最终确定模型输出的所有过程,即建模流程都可以看作算法,如分类、回归模型,搜索最优参数算法。

下面我们来举两个例子,看看回归和分类问题的应用场景有什么不同。

回归模型

![](/wik

更新时间:2021-07-30 08:22

基于XGBoost的价值选股策略代码

本代码完整版一共包括三部分:数据、算法、回测交易。 由于该策略与机构有一些合作,我们只放出了数据和算法。希望大家能够理解!

策略案例

https://bigquant.com/experimentshare/5a93201876eb401e998867e0b5106175

\

更新时间:2021-07-30 08:09

分页第1页第2页
{link}