净资产收益率(Return on Equity,简称 ROE)是一种衡量公司盈利能力的财务指标,用来评估公司管理层使用股东资本的效率。
ROE可以表示公司能够从每单位股东权益中创造多少利润。
BigQuant的金融市场数据因子平台以及AI量化策略开发平台(PC端)可以验证ROE净资产收益率因子在AI量化策略中的表现。
![](/wiki/api/attachments.redirect?id=dd
更新时间:2024-06-07 10:48
布林带指标(Bollinger Bands,缩写BOLL)是一种流行的技术分析工具,由约翰·布林格(John Bollinger)在1980年代发明。
布林带主要用于评估股票或其他金融资产的价格波动性和市场趋势。一般由三条线组成:一个中间带(移动平均线)和两个外带(标准差带)。
BigQuant的金融市场数据因子平台以及AI量化策略平台(PC端),可以验证布林带BOLL指标因子组成的AI量化策
更新时间:2024-06-07 10:48
贝塔系数(Beta)是衡量一项投资相对于整体市场波动的指标。它是资本资产定价模型(CAPM)的关键组成部分,用于计算资产的预期回报和风险。贝塔系数反映了个别股票或投资组合相对于市场基准(如标准普尔500指数)的波动性。
BigQuant的金融市场数据因子平台以及AI量化策略平台(PC端),可以验证Beta贝塔系数因子组成的AI量化策略。
![](/wiki/api/attachments.redirect?
更新时间:2024-06-07 10:48
(包含移动平均线公式及Python代码)
移动平均线(Moving Averages)是一种分析金融时间序列数据的基本工具,用于平滑价格数据以识别趋势。移动平均线主要有两种类型:简单移动平均线(SMA)和指数移动平均线(EMA)。
BigQuant也提供全面的金融市场历史数据因子平台以及AI量化策略编写平台(PC端),帮助大家快速验证不同指标因子组成的量化策略。
![](/wiki/api/att
更新时间:2024-06-07 10:48
换手率(Turnover)通常用于描述股票或其他证券在特定时间内的交易活跃程度。金融市场中,换手率可用于衡量股票的流动性,即股票在市场上买卖的频率和容易程度。
BigQuant的金融市场数据因子平台以及AI量化策略平台(PC端),验证换手率因子组成的AI量化交易策略。
![](/wiki/api/attachments.redirect?id=83ec82a2-6c14-4425-8bae-05b216f7
更新时间:2024-06-07 10:48
市盈率(Price-to-Earnings Ratio,简称 P/E Ratio)是一种评估公司股价相对于其每股盈利(EPS)的指标。它是投资者用来衡量股票投资价值和评估公司股价是否被高估或低估的常用工具。
BigQuant的金融市场数据因子平台以及AI量化策略平台(PC端),验证市盈率因子组成的AI量化交易策略。
![](/wiki/api/attachments.redirect?id=dfeedac3
更新时间:2024-06-07 10:48
多因子选股模型涉及将多个指标(或“因子”)组合起来,用以评估股票的潜在回报与风险。这些因子通常包括但不限于价值、动量、规模、质量、波动性和股息收益等。接下来,将详细解释一些常见的多因子模型指标公式,并用数据示例来说明它们如何工作。
价值因子通常通过比较股票的市场价格与其基本面价值来评估股票是否被低估。常用的指标包括市盈率(P/E)、市净率(P/B)、企业价值对EBITD
更新时间:2024-06-07 10:48
工欲善其事,必先利其器,本文精心整理了各大编程语言常用的量化分析工具,会用其中几个就应该可以在私募找到一份不错的量化工作,如果不想安装推荐 BigQuant 人工智能量化投资 一站式的Python+机器学习+量化投资平台,打开浏览器就可以开发算法策略。
欢迎大家补充~~~
更新时间:2024-06-07 10:43
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-27 06:10
AVL树是一种自平衡二叉搜索树。在这种树中,任何节点的两个子树的高度差最多为1。这种高度平衡确保了在最坏情况下,树的操作(如查找、插入、删除)都能在O(log n)的时间复杂度内完成,其中n是树中节点的数量。
![](/wiki/api/attachments.redirect?id=6bcacc6e-3765-4c12-9ab8-827df17f96a9 " =570x321
更新时间:2024-05-20 05:56
AVL树是一种自平衡二叉搜索树。在这种树中,任何节点的两个子树的高度差被严格控制在1以内。这确保了树的平衡,从而保证了搜索、插入和删除操作的高效性。AVL树是由Georgy Adelson-Velsky和Evgenii Landis在1962年发明的,因此得名(Adelson-Velsky和Landis树)。
平衡因子:每个节点的平衡因子是其左子树的高度减去其右子树的高度。平衡因子必须保持在-1
更新时间:2024-05-20 05:55
SciPy是基于Python的一个开源库,用于数学、科学和工程计算。它建立在NumPy的基础上,提供了许多高级的数值计算功能,从而使得Python成为一个强大的科学计算环境。SciPy是科学计算中最重要的库之一,广泛应用于学术和工程领域,包括金融领域的量化分析和模型开发。
SciPy库包含了众多的模块,如线性代数、优化、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理等。这些模块提供了强大的功能,可以处理复杂的科学计算问题。
更新时间:2024-05-20 02:57
本文是基于StackAbuse的一篇讲解Seaborn的文章上编写。 附示例及实现代码,可直接前往文末一键克隆代码进行实践研究。
在本文中,我们将研究Seaborn,它是Python中另一个非常有用的数据可视化库。Seaborn库构建在Matplotlib之上,并提供许多高级数据可视化功能。 尽管Seaborn库可以用于绘制各种图表,如矩阵图、网格图、回归图等,但在本文中,我们将
更新时间:2024-05-20 02:50
\
更新时间:2024-05-20 02:30
本视频课程包含python、pandas、numpy基础,配合在BigQuant平台上练习,掌握编程基础,读懂代码、编写简单的代码。
https://www.bilibili.com/video/BV1dE411d7Q4?p=2
\
\
更新时间:2024-05-20 02:09
本文介绍了Python中非常重要的数据类型——列表。
List(列表),是有序集合,没有固定大小,可以通过对偏移量以及其他方法修改列表大小。列表的基本形式如:[1,2,3,4]
Tuple(元组),是有序集合,是不可变的,可以进行组合和复制运算后会生成一个新的元组。元组的基本形式比如:(1,3,6,10)
String(字符串),也是有序集合,字符串的基本形式比如:’hello’,这里不进行具体介绍。
Set(集合),是一个无序不重复元素的集。基本功能包括关系运算和消除重复元素。集合
更新时间:2024-05-20 02:09
Python是互联网、数据科学、量化交易等领域使用最广泛的编程语言之一,是AI量化策略研究平台主要使用的策略开发语言。
本文简短而全面,用十分钟的时间带你走入Python的大门。建议一边学习,一边在 AI量化平台-编写策略 里实践。
Python中没有强制的语句终止字符,代码块是通过缩进来指示的。缩进表示一个代码块的开始,逆缩进则表示一个代码块的结束。一般用4个空格来表示缩进。
更新时间:2024-05-20 02:09
Python作为一门最热门的语言,现在已经成为数据分析、编程门投资、机器学习的主流语言。
Python是一种计算机程序设计语言。你可能已经听说过很流行的编程语言,比如非常学的C语言,非常流行的Java语言等等,适合初级的基本的JavaScript语言。
首先,我们学一下编程语言的基础知识。用任何编程语言来开发程序,都是为了让计算机干活,比如下载一个MP3,写一个文档等等,而计算机干活的CPU只认识机器指令,所以,尽管不同的编程语言千差万别,最终都可以“翻译”成CPU可以用机器指令。而不同的编程
更新时间:2024-05-20 02:09
本文介绍了Python中非常重要的数据类型——字典
附件:字典的使用
https://bigquant.com/experimentshare/12746792311940c2969d62e66309a404
\
更新时间:2024-05-20 02:09
本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:
https://bigquant.com/wiki/doc/seaborn-ISwoff0l23
本文是基于StackAbuse的一篇讲解Seaborn的文章上编写。 附示例及实现代码,可直接前往文末一键克隆代码进行实
更新时间:2024-05-16 06:50
{{use_style}}
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
[https://bigquant.com/wiki/doc/demos-ecdRvuM1TU](https://bigquant.com/wiki/doc/demos-ecd
更新时间:2024-05-16 06:07
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 03:33
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 03:23
当用户训练出具有一定意义的深度学习模型的时候,把训练得到的模型固化到本地可以方便以后的调用,关于如何固化深度学习模型,请移步这里,一般来说,固化深度学习模型是为了节省下一次训练重跑的时间,除此之外,被固化的模型还具有更复杂的使用方法。
本篇文章主要目的是为了讲述如何在一个自定义Python模块去调取被固化的深度学习模型,并且使用这些模型去做预测。需要注意的是,调取模型和做预测这两个流程都将在自定义Python中实现,不需要再新建其他的模块。
更新时间:2024-05-15 02:10
with t1 as (
SELECT
date,
date_format(date,"%Y-%m-%d") as new_date,
instrument,
close,
FROM
cn_stock_bar1m
WHERE
1 = 1
AND date >= '2024-03-01'
AND date <= '2024-03-02'
)
SELECT * FROM t
更新时间:2024-03-25 09:10