贝塔系数(Beta)是衡量一项投资相对于整体市场波动的指标。它是资本资产定价模型(CAPM)的关键组成部分,用于计算资产的预期回报和风险。贝塔系数反映了个别股票或投资组合相对于市场基准(如标准普尔500指数)的波动性。
BigQuant的金融市场数据因子平台以及AI量化策略平台(PC端),可以验证Beta贝塔系数因子组成的AI量化策略。
![](/wiki/api/attachments.redirect?
更新时间:2024-06-07 10:48
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/0f3871389f5846009ba425fe066d03b2
\
更新时间:2024-05-20 01:07
\
{'liquidity', 'beta', 'value', 'nonlinear_size', 'momentum', 'leverage', 'size', 'growth', 'residual_volatility'}
\
更新时间:2023-01-09 12:54
本文主要有以下几点改进: 1.特征:加入新特征,beta,macd,willr等。 2.模型:使用随机森林,其中树的个数限制为15,树的最大深度为25,防止过拟合。使用回归算法而不是分类算法。 3.标注:使用(卖出价格-买入价格)/ 买入价格作为标签。 4.回测:股票资金分配,使得排名靠前的股票能分配到更多资金投入,加入止损策略(跌破3%止损)。
T.norm([1 / math.exp(i) for i in range(0, stock_count)]) #[0.3391,0.2139,0.1695,0.1460,0.1312]
更新时间:2022-11-20 03:34
回测模块的返回可以用
read_raw_perf()来读取,但是读取之后每个列的值的含义可以去哪里查呢,虽然这个链接已经写了一部分,但是列名和使用read_raw_perf()读取后的结果是对不上的,比如读取后的列名有 returns,
starting_exposure,pnl,
excess_return max_drawdown max_leverage
等等这些列的具体含义有说明文档可以查吗?
目前还没有对raw_perf进行字段文档的输出,这个我们下来整理一下近期会放到知识库中
更新时间:2022-11-09 01:23
最近有很多篇关于CTA危机alpha之类的文章,讨论来讨论去不知所云。
一般所谓的alpha,这是针对股票市场而言的。比如一只股票的日线收益率,对市场的收益率,做一个带常数项的线性回归,那么得到的常数项就成为alpha,系数成为beta,这是最原始的定义。
这个定义的含义在于,把一支孤股票的收益率拆分成两项:一项是跟市场整体收益率相关的,比如市场涨1%,它跟着涨0.5%,那么beta就是0.5;另外一项是跟市场涨跌无关的,就是alpha项,如果是正的,就称为超额收益。
一般认为,跟随市场涨跌那部分收益,是承受了市场涨跌风险的,所以这部分收益不能算作投资经理的水平。只有跟市场涨跌无关的那部
更新时间:2022-06-28 08:35
本篇是“学海拾珠”系列第四篇,摘选自论文《AssetPricing: A tale of nightand day》的核心结论
作为资本资产定价的入门级公式,CAPM长久以来在实际市场中表现不佳,市场风险(beta)与经典的日度收益率(close-to-close)之间的相关性很弱,本文作者创造性地提出了一个观点:股票日内收益(open-to-close)和隔夜收益(close-to-open)对于beta的敏感度是完全不同的
为检验CAPM在每天不同时间段内的表现形式,本文以美股为样本,将股票收益拆分成日内收益和隔夜收益两部分,分别研究两者和beta的相关性,实证结
更新时间:2021-11-25 10:05