文章指出,在过去20年中,武装冲突的频率增加,这些冲突不仅影响社会层面,还对经济和金融领域产生重大影响。例如,“9·11”事件后,市场不确定性显著增加,投资受到抑制。地缘政治风险对经济周期和金融市场有显著影响,因此中央银行家和企业投资者常将地缘政治风险视为投资决策的重要因素。此外,地缘政治事件对不同行业的影响不同,例如旅游业可能受到负面影响,而国防行业则可能从中受益。
方法文章提出了一个结合ARMA-GARCH模型和多种神经网络技术的混合模型,用于检测日内市场模式并预测国防股票市场和外汇市场的波动。这些技术包括:
更新时间:2025-04-22 10:38
更新时间:2025-04-15 07:19
如何在全连接模块中自定义swish激活函数的代码
\
https://www.bilibili.com/video/BV1DL4y1w7sb?share_source=copy_web
[https://bigquant.com/experimentshare/9f1dae69e055429c9922b4f5d038361a](https://bigquant.com/experimentshare/9f1d
更新时间:2025-04-15 07:19
深度学习在期货高频上的应用
8月19日Meetup问题模板:
https://bigquant.com/experimentshare/f58dbfb388454407b8a2b99eb14cf1ea
\
更新时间:2025-04-15 07:19
AI量化Meetup 2021年1月28日期问题,配合视频更容易理解。视频详见:
https://bigquant.com/experimentshare/5dd6b4f7a29d4c5d827aeeff05816cfd
\
更新时间:2025-04-15 07:19
更新时间:2025-04-15 07:19
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
7月30日Meetup 模板案例:
https://bigquant.com/experimentshare/99d8bec5248e4878b33a21bc119a6671
\
更新时间:2025-04-15 07:19
如何利用神经网络分析股票之间的相关性,达到词向量空间的效果?
https://bigquant.com/experimentshare/3dae29a664c84984a1ae6c65e62f51e0
[https://www.bilibili.com/video/BV1Ma411N7KS?share_source=copy_web&vd_source=2e7dc1240ea373ea6eba1134
更新时间:2025-04-15 07:19
\
徐耀杰(woshisilvio)
算法没有最好,只有更好。 这个问题的答案取决于许多因素,例如股票市场的条件,数据集的质量和特征工程的有效等。接下来,我们来看看这些算法的优势和劣势:
正常情况下,在处理少量的股票量
更新时间:2025-04-15 07:19
机器学习里面究竟有多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。
在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即 线性回归 和 逻辑回归 。
线性回归就是我们前面说过的房价求解问题。如何拟合出一条直线最佳匹配我所有的数据?一般使用“最小二乘法”来求解。“最小二乘法”的思想是
更新时间:2025-04-14 04:26
/* 使用DAI SQL为量化模型预测生成标签数据。标签反映了未来5日的收益率,并且被离散化为20个桶,每个桶代表一个收益率范围。这样,我们就可以训练模型来预测未来的收益率范围,而不仅仅是具体的收益率值。
更新时间:2025-02-16 01:51
请问如何在代码中使用自定义的Pytorch神经网络并使用GPU加速?目前在文档中没有找到相关的描述,是否支持这种功能呢?
更新时间:2025-02-14 07:34
你是否曾经听到过人们谈论机器学习,而你却对其含义只有一个模糊的概念呢?你是否已经厌倦了在和同事对话时只能点头呢?现在,让我们一起来改变这个现状吧!
这篇指南是为那些对机器学习感兴趣,但又不知从哪里开始的人而写的。我猜有很多人曾经尝试着阅读机器学习的维基百科词条,但是读着读着倍感挫折,然后直接放弃,希望能有人给出一个更直观的解释。本文就是你们想要的东西。
本文的写作目标是让任何人都能看懂,这意味着文中有大量的概括。但是那又如何呢?只要能让读者对机器学习更感兴趣,这篇文章的任务也就完成了。
机器学习是一种概念:不需要写任何与问题有关的特定代码,泛型算法(Gene
更新时间:2024-12-04 08:53
更新时间:2024-06-18 06:13
年初就一直在等啦
终于等到这本书
分享一下
此书的代码下载地址:https://github.com/fchollet/deep-learning-with-python-notebooks
。
所以我们采用随机梯度下降( Stochastic Gradient Descent),也就是说每次完成一次计算就进行升级。
但是,还有两个问题导致目前的模型效率低下!
第一个问题,我们每次只对窗口
更新时间:2024-06-12 06:06
本文是译文,原文戳这里.
本教程将介绍Word2Vec的skip-gram神经网络模型。本教程的目的是忽略Word2Vec的一般介绍性和抽象概念,深入了解skip-gram的更多的细节。
skip-gram神经网络模型其最基本的形式实际上惊人的简单; 我认为是所有的细节和技巧使其难以解释。
我们先从高层次了解该模型。Word2Vec使用了一个在机器
更新时间:2024-06-12 06:06
什么是GAN?(本文内容整理自网络)
GAN(Generative Adversarial Netwo,生成对抗网络)是用于无监督学习的机器学习模型,由Ian Goodfellow等人在2014年提出,由神经网络构成判别器和生成器构成,通过一种互相竞争的机制组成的一种学习框架。
卷积神经网络之父-Yann LeCun这样评论GAN
*在我看来,最重要的是对抗训练( GAN也称为生成对抗网络)。这一想法最初
更新时间:2024-06-12 06:04
Update At 2017年6月23日
本文作者: HackCV
\
卷积神经网络(ConvNets 或者 CNNs)属于神经网络的范畴,已经在诸如图像识别和分类的领域证明了其高效的能力。卷积神经网络可以成功识别人脸、物体和交通信号,从而为机器人和自动驾驶汽车提供视力。
在上图中,卷积神经网络可以
更新时间:2024-06-12 06:03
本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
[https://bigquant.com/experimentshare/42bf93884b1246ad83c2874f06765732](https://bigquant.com/experimentshare/42bf93884b12
更新时间:2024-05-20 06:39
\
机器学习的研究领域包括有监督学习(Supervised Learning),无监督学习(Unsupervised Learning),半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)等诸多内容。针对有监督学习和半监督学习,都需要一定数量的标注数据,也就是说在训练模型的时候,全部或者部分数据需要带上相应的标签才能进行模型的训练。但是在实际的业务场景或者生产环境中,工作人员获得样本的成本其实是不低的,甚至在某些时候是相对较高的,那么如何通过较少成本来获得较大价值的标注数据,进一步地提升
更新时间:2024-05-20 06:19
本文为旧版实现,供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
这是本系列专题研究的第五篇:基于长短期记忆网络LSTM的深度学习因子选股模型。LSTM作为改进的RNN(循环神经网络),是一种非常成熟的能够处理变化的序列数据的神
更新时间:2024-05-20 02:09
从AlphaGo到AlphaStar,深度学习的强大逐步展现给世人。那么,什么是深度学习呢?本文将简要介绍深度学习的框架以及流程。
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
如何使用计算机建立人脑的神经网络呢?下面介绍的感知器算法很好的模拟了人脑神经网络中的神经元。
人通过收集触觉、味觉、嗅觉、视觉与听觉来得到对外界事物的认识。计算机将人收集到的这些信息设定为输入(在下图中体现为$x_1、x_2...x_n$),通过某个函数(在下图体现为$\
更新时间:2024-05-20 02:09