神经网络

神经网络是一种受生物大脑神经结构启发的计算方法,已成为现代金融领域的重要工具。其强大的模式识别和预测能力,使得金融市场分析、风险管理和投资策略制定得以显著提升。在金融应用中,神经网络能够从海量的历史数据中学习和识别复杂的非线性关系,进而预测市场趋势、评估信贷风险或检测欺诈行为。与传统的统计模型相比,神经网络更能够适应快速变化的市场环境,为金融机构提供更加精准和及时的决策支持。然而,尽管神经网络在金融领域具有巨大潜力,其应用也面临着数据质量、过拟合和解释性等方面的挑战。

如何使用Pytorch

请问如何在代码中使用自定义的Pytorch神经网络并使用GPU加速?目前在文档中没有找到相关的描述,是否支持这种功能呢?

更新时间:2024-07-29 14:37

华安证券-“学海拾珠”系列之一百七十三-基于端到端神经网络的风险预算与组合优化

/wiki/static/upload/8d/8d734f96-29a5-4134-ac90-d9cba38359d0.pdf

\

更新时间:2024-06-18 06:13

Deep Learning with Python 终于等到你!

年初就一直在等啦

终于等到这本书

分享一下


此书的代码下载地址:https://github.com/fchollet/deep-learning-with-python-notebooks

![](/community/uploads/default/original/3X/c/c/cc94b84a373c66d820177c480765c8ec2467c73d

更新时间:2024-06-12 06:16

Word2Vec系列



\

更新时间:2024-06-12 06:06

Word2Vec 学习心得

好嘛博主食言了。不过本文没什么干货,主要是前后看了大概一个星期,反复去读源码和解读文章,终于感觉这东西不那么云山雾罩了。同时也发现网上很多材料有点扯淡,99% 的博文不过是把别人的东西用自己的话说一下,人云亦云。好多人自己理解错了而不自知,实在是误人误己。

我也不敢说理解得有多深,下面的内容甚至可能有自相矛盾的地方,所以阅读本文时请一定擦亮眼睛,认真思考。

源码才是根本,作者那两篇论文感觉参考价值也不高。说到底,Machine Learning/Deep Learning 的价值在于实践,而实际开发的应用中经过大量的 tricks 之后,代码跟论文推导、实验可能相去甚远。

Data Mi

更新时间:2024-06-12 06:06

Word2Vec介绍: 为什么使用负采样(negtive sample)?

目录

  1. 随机梯度下降法有什么问题?
  2. 负采样
  3. 计算梯度

1. 随机梯度下降法有什么问题?

通过对代价函数求权重的梯度,我们可以一次性对所有的参数 theta 进行优化,但是如果每次等全部计算完成再优化升级,我们将等待很长时间(对于很大的语料库来说)。

所以我们采用随机梯度下降( Stochastic Gradient Descent),也就是说每次完成一次计算就进行升级。

但是,还有两个问题导致目前的模型效率低下!

第一个问题,我们每次只对窗口

更新时间:2024-06-12 06:06

Word2Vec介绍:skip-gram模型

本文是译文,原文戳这里.

本教程将介绍Word2Vec的skip-gram神经网络模型。本教程的目的是忽略Word2Vec的一般介绍性和抽象概念,深入了解skip-gram的更多的细节。

模型概述

skip-gram神经网络模型其最基本的形式实际上惊人的简单; 我认为是所有的细节和技巧使其难以解释。

我们先从高层次了解该模型。Word2Vec使用了一个在机器

更新时间:2024-06-12 06:06

997篇-历史最全生成对抗网络(GAN)论文串烧

什么是GAN?(本文内容整理自网络)

GAN(Generative Adversarial Netwo,生成对抗网络)是用于无监督学习的机器学习模型,由Ian Goodfellow等人在2014年提出,由神经网络构成判别器和生成器构成,通过一种互相竞争的机制组成的一种学习框架。

 {w:100}{w:100}卷积神经网络之父-Yann LeCun这样评论GAN

*在我看来,最重要的是对抗训练( GAN也称为生成对抗网络)。这一想法最初

更新时间:2024-06-12 06:04

卷积神经网络入门,卷积池化与非线性

  • Update At 2017年6月23日

    本文作者HackCV

\

什么是卷积神经网络?为什么它们很重要?

卷积神经网络(ConvNets 或者 CNNs)属于神经网络的范畴,已经在诸如图像识别和分类的领域证明了其高效的能力。卷积神经网络可以成功识别人脸、物体和交通信号,从而为机器人和自动驾驶汽车提供视力。

图 1{w:100}{w:100}

在上图中,卷积神经网络可以

更新时间:2024-06-12 06:03

算法那么多,如何给策略选择最佳的算法?

\

作者

徐耀杰(woshisilvio)

常见算法优劣比较

算法没有最好,只有更好。 这个问题的答案取决于许多因素,例如股票市场的条件,数据集的质量和特征工程的有效等。接下来,我们来看看这些算法的优势和劣势:

  1. 神经网络:适用于复杂的非线性问题,可以有效地捕捉市场的非线性特征和复杂关系。
  2. 决策树:适用于数据量较小、特征维度较少的情况,可以很好地解释模型的决策过程。
  3. 随机森林:适用于处理高维度、复杂数据集,具有很好的鲁棒性和准确性。
  4. 支持向量机:适用于数据量较小、特征维度较高的情况,可以有效地处理非线性和线性可分问题。

正常情况下,在处理少量的股票量

更新时间:2024-06-07 10:55

深度学习在期货高频上的应用

8月19日Meetup问题模板:

https://bigquant.com/experimentshare/f58dbfb388454407b8a2b99eb14cf1ea

\

更新时间:2024-06-07 10:55

如何在全连接层中自定义swish激活函数

问题

如何在全连接模块中自定义swish激活函数的代码

\

视频

https://www.bilibili.com/video/BV1DL4y1w7sb?share_source=copy_web

策略源码

[https://bigquant.com/experimentshare/9f1dae69e055429c9922b4f5d038361a](https://bigquant.com/experimentshare/9f1d

更新时间:2024-06-07 10:55

深度学习在期货高频上的应用

问题

深度学习在期货高频上的应用

策略源码

8月19日Meetup问题模板:

https://bigquant.com/experimentshare/f58dbfb388454407b8a2b99eb14cf1ea

\

更新时间:2024-06-07 10:55

利用神经网络分析股票相关性

问题

如何利用神经网络分析股票之间的相关性,达到词向量空间的效果?

策略源码

https://bigquant.com/experimentshare/3dae29a664c84984a1ae6c65e62f51e0

视频

[https://www.bilibili.com/video/BV1Ma411N7KS?share_source=copy_web&vd_source=2e7dc1240ea373ea6eba1134

更新时间:2024-06-07 10:55

超参寻优调参顺序

策略案例


https://bigquant.com/experimentshare/fe8ec83484ca44148602d39a58545d75

\

更新时间:2024-06-07 10:55

简单网格交易日内择时

AI量化Meetup 2021年1月28日期问题,配合视频更容易理解。视频详见:

2021-AI量化Meetup导览

策略案例

https://bigquant.com/experimentshare/5dd6b4f7a29d4c5d827aeeff05816cfd

\

更新时间:2024-06-07 10:55

超参优化

更新

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


7月30日Meetup 模板案例:

策略案例

https://bigquant.com/experimentshare/99d8bec5248e4878b33a21bc119a6671

\

更新时间:2024-06-07 10:55

多层感知器回归模型案例


本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

[https://bigquant.com/experimentshare/42bf93884b1246ad83c2874f06765732](https://bigquant.com/experimentshare/42bf93884b12

更新时间:2024-05-20 06:39

主动学习(Active Learning)

\

背景

机器学习的研究领域包括有监督学习(Supervised Learning)无监督学习(Unsupervised Learning),半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)等诸多内容。针对有监督学习和半监督学习,都需要一定数量的标注数据,也就是说在训练模型的时候,全部或者部分数据需要带上相应的标签才能进行模型的训练。但是在实际的业务场景或者生产环境中,工作人员获得样本的成本其实是不低的,甚至在某些时候是相对较高的,那么如何通过较少成本来获得较大价值的标注数据,进一步地提升

更新时间:2024-05-20 06:19

Machine Learning is Fun! — 全世界最简单的机器学习入门指南

你是否曾经听到过人们谈论机器学习,而你却对其含义只有一个模糊的概念呢?你是否已经厌倦了在和同事对话时只能点头呢?现在,让我们一起来改变这个现状吧!

这篇指南是为那些对机器学习感兴趣,但又不知从哪里开始的人而写的。我猜有很多人曾经尝试着阅读机器学习的维基百科词条,但是读着读着倍感挫折,然后直接放弃,希望能有人给出一个更直观的解释。本文就是你们想要的东西。

本文的写作目标是让任何人都能看懂,这意味着文中有大量的概括。但是那又如何呢?只要能让读者对机器学习更感兴趣,这篇文章的任务也就完成了。

什么是机器学习?

机器学习是一种概念:不需要写任何与问题有关的特定代码,泛型算法(Gene

更新时间:2024-05-20 03:18

基于LSTM模型的智能选股策略

旧版声明

本文为旧版实现,供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

导语

这是本系列专题研究的第五篇:基于长短期记忆网络LSTM的深度学习因子选股模型。LSTM作为改进的RNN(循环神经网络),是一种非常成熟的能够处理变化的序列数据的神

更新时间:2024-05-20 02:09

深度学习简介

导语

从AlphaGo到AlphaStar,深度学习的强大逐步展现给世人。那么,什么是深度学习呢?本文将简要介绍深度学习的框架以及流程。

从单层感知器开始

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

如何使用计算机建立人脑的神经网络呢?下面介绍的感知器算法很好的模拟了人脑神经网络中的神经元。

人通过收集触觉、味觉、嗅觉、视觉与听觉来得到对外界事物的认识。计算机将人收集到的这些信息设定为输入(在下图中体现为$x_1、x_2...x_n$),通过某个函数(在下图体现为$\

更新时间:2024-05-20 02:09

基于DNN模型的智能选股策略

导语

这是本系列专题研究的第六篇:基于DNN模型的深度学习智能选股策略。本文简单介绍了和DNN相关的原理,并举了一个实例,具体展示了如何应用以及应用的结果。


DNN原理介绍

神经元

神经网络的每个单元结构如下:

图1.神经元结构其对应公式如下: ![](/wiki/api/attachments.redirect?id=786ada84-4578-45b9-98a9-a281762597d

更新时间:2024-05-20 02:09

Tensorflow第二讲 - MNIST

概要

当我们开始学习编程的时候,第一件事往往是学习打印"Hello World"。就好比编程入门有Hello World,机器学习入门有MNIST。

MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片

它也包含每一张图片对应的标签,告诉我们这个是数字几。比如,上面这四张图片的标签分别是5,0,4,1。

在此教程中,我们将训练一个机器学习模型用于预测图片里面的数字。我们的目的不是要设计一个世界一流的复杂模型 -- 尽管我们会在之后给你源代码去实现一流的预测模型 -- 而是要介绍下如何使用TensorFlow。所以,我们这里会从一个很简单的数学模型开始,它叫做Soft

更新时间:2024-05-20 02:09

神经网络交易算法

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

https://bigquant.com/experimentshare/723e10568f294571924b89f3953ce20b

\

更新时间:2024-05-20 01:02

分页第1页第2页第3页
{link}