nan1. 决策树模型
决策树是机器学习中的一个典型的非参数模型,它使用规则,而不是参数,来定义模型
以下是一个典型的决策树模型:使用三个特征:X1,X2,X3;预测一个标签 Y
更新时间:2024-01-09 11:51
决策树用什么预测
没找到对应的预测模块。。。
这个模块是训练加预测一起的,注意一下模块上面第四个输入,那里是输入预测数据,下面输出的第二个接口是对应的输出预测结果
更新时间:2022-12-20 14:20
作者:woshisilvio
相比同样的决策树模型还有线性分类模型,deepAlpha无疑具有更大的可扩展空间。 一般的机器学习模型 一旦出现训练数据量过大,又或者面对一些极值数据样本和极端数据差异过大的情况,模型容易陷入过拟合的状态。 模型比较依赖训练的因子特征,如果因子选择不好,会导致模型学习效果不佳,而且在后期难以通过参数去调整学习的效果。
StockRanker绩效:98个因子
![{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}
更新时间:2022-08-17 00:16
机器学习已广泛应用于各个前沿领域
机器学习在金融市场中的应用举例 1.Lasso回归与商品期货价格预测
2.使用决策树模型预测财务造假
3.逻辑回归与债务违约预警
4.集成学习在多因子选股中的应用
机器学习应用于金融市场的局限
/wiki/static/upload/7e/7e665c7e-52b2-4d99-8700-4d1d4585ad31.pdf
\
更新时间:2022-07-30 01:18
来源:The Journal of Portfolio Management December 8,2021
标题:Trending Fast and Slow
作者:Eddie Cheng, Nazar Kostyuchyk, Wai Lee, Pai Liu, Chenfei Ma
时序动量策略的基础是假设过去的收益对未来的收益有一定程度的预测能力。通常,一个策略是通过在上涨阶段建立多头头寸,在下跌阶段建立空头头寸来实现的。学术文献文献表明,最近过去的资产收益与未来收益正相关。时序动量策略的有效性在多个时期、许多市场和许多资产中得到了证明。
更新时间:2021-12-14 02:28