数据驱动决策

在金融领域,"数据驱动决策"已经成为现代业务运营的核心。大量的结构化与非结构化数据,通过高效的分析工具和机器学习算法,被转化为具有前瞻性的洞察,为风险管理、投资策略、客户关系管理等提供了精确指导。这种决策模式的优势在于,它能够减少人为偏见和误差,提供更加客观、实时的分析结果。尤其是在快节奏的金融市场,数据驱动的决策不仅可以加速反应时间,还可以根据历史模式和市场趋势预测未来,从而实现更高的投资回报率。简而言之,数据已经成为金融决策的生命线,为行业带来了更高的效率、准确性和灵活性。

从均值方差到有效前沿(文字版)

这篇文章的主要目的是介绍有效前沿这个理论工具和分析框架。我们由均值方差分析展开,逐步推演到有效前沿。然后,我们又说到有效前沿在投资或者量化中的应用场景,最后我们也总结了有效前沿的一些问题,尤其是敏感性问题。在教程中,特意加入了一些实验代码,可以让大家在阅读的过程中有更好的理解。

有效前沿

说到有效前沿(有些叫效率边界),就要提到马科维茨的投资组合理论了。

首先介绍下它的三大假设:

  • 单一投资期,比如一年
  • 流动性很高,无交易成本
  • 投资者的选择基于最优均值方差

于是,我们可以开始推导有效前沿,在这之前,我们先约定一些数学符号:

  • rf:无风险利率
  • μ:风险

更新时间:2024-06-17 07:25

零基础《AI挑战虚拟股票预测大赛》入门教程

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-12 06:00

监督式机器学习算法的应用:择时

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


\

导语

《Machine Learning for Stock Price Forecasting》是Ali El-Shayeb撰写的机器学习系列文章 ,本文主要介绍其第二部分内容——《监督式机器学习算法的应用》,并将其思想和代码应用在中国股票市场,开发出具有择时功能的监督式机器学习算法,最后进行策略回测。对此感兴趣的小伙伴可以直接在

更新时间:2024-06-12 05:57

自定义上传行情数据的教程+滚动训练

2021年3月25日Meetup策略:

策略案例

https://bigquant.com/experimentshare/37c50fea88f648b2bcd895c3ce662001

\

更新时间:2024-06-07 10:55

特征取分位数据

2021年7月8日Meetup模板:

https://bigquant.com/experimentshare/4fa50659ea5340188b574e288c0f9903

\

更新时间:2024-06-07 10:55

高频回测模块择时策略

8月19日Meetup策略模板:

https://bigquant.com/experimentshare/a6bae485ffcc47819510b788ddfad338

\

更新时间:2024-05-21 06:30

代码策略

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/stockranker-qFD1Xg1Wz3


代码策略

[https://bigquant.com/experimentshare/23b8dad5c75e4e399bb937d498dccb8f](https://bigquant.com/experimentshare/23b8dad5c75e4e399bb937d498dcc

更新时间:2024-05-16 06:36

中信证券【基本面量化】行业选择逻辑与行业配置策略

/wiki/static/upload/bf/bf43777d-70f4-4cfc-be1c-d17c4002d57b.pdf

\

更新时间:2024-05-15 02:10

HeatMap - 热力图

接口

对于HeatMap(热力图)的 _type=”heatmap” 和 series_options:

bigcharts.Chart(
    ... 其他参数
    # 【设置图表类型】图表类型,具体参考各类型图表
    type_ = "heatmap",
    
    # 热力图中y传入的数据轴必须是两项,第一项表示的是y轴坐标轴的刻度数据第二项表示的

更新时间:2024-04-25 07:38

编辑器如何设置字体?

更新时间:2023-10-25 03:05

【参赛】Deep Alpha-CNN策略克隆&调参擂台赛

\

更新时间:2023-06-27 03:23

如何使用自己的数据运行

https://bigquant.com/experimentshare/657440e6921f4a32833dad80017fb83e

\

更新时间:2023-06-01 02:13

2023.5 直播代码-潮汐因子+集群算力

{{membership}}

https://bigquant.com/experimentshare/78b2cb544e1b4f108ed767acf490c133

\

更新时间:2023-05-31 07:22

BigQuant_ChatGPT

你好

更新时间:2023-02-10 06:37

用传统框架测试机器学习-GBDT算法

策略案例

https://bigquant.com/experimentshare/44cc116a1dad4c37983b9be35da208ee

\

更新时间:2022-11-20 03:34

量化策略专题研究:行业趋势配置模型研究-中信证券-20200325

/wiki/static/upload/74/7464d5e3-c643-485a-bdef-793d0ba69cca.pdf

\

更新时间:2022-10-09 11:05

你认为量化投资有何魅力?

有人说量化投资既有技术的魅力,也有纯学术研究的魅力。

量化投资的信息来源主要是公开、客观的数据,所以“数据驱动决策”的决策权,在相对静态的数据、模型、历史周期里,并非人的主观。于是,这让量化的投研可以更加纯粹地追求效率,且更有社会经济效益。

如果你从事的是量化领域,那么哪里更让你有兴趣?

更新时间:2022-09-07 07:15

DeepAlpha研究报告


\

更新时间:2022-04-18 02:07

自定义数据进行因子分析demo


\

更新时间:2022-02-25 06:08

实战CTA 截面动量VS时序动量 如何动态分配策略?

原文标题:The Journal of Portfolio Management Multi-Asset Special Issue

2021 3.29

作者:Olivier Schmid 、Patrick Wirth

标题:Optimal Allocation to Time-Series and Cross-Sectional Momentum

中文编辑:量化投资与机器学公众号 QIML Insight 系列

\

核心观点

趋势(或动量)策略应该根据市场的状态,动态分配策略在时序动量与截面动量的权重。

基于时序动量与截面动量的组合策略主要依赖于各品种的趋势强度及品种间的相

更新时间:2021-11-26 08:39

数据可视化

\

更新时间:2021-11-20 03:28

LSTM Networks应用于股票市场之Sequential Model

策略案例


https://bigquant.com/experimentshare/8594992a1d9345d98cbe949eb6297067

\

更新时间:2021-07-30 08:10

使用bigexpr表达式引擎开发AI策略

策略案例

https://bigquant.com/experimentshare/05251c753111424eaff32648838ac24f

\

更新时间:2021-07-30 07:26

Transformer在量化选股中的应用

一、基于时间嵌入的方法

原文链接:https://towardsdatascience.com/stock-predictions-with-state-of-the-art-transformer-and-time-embeddings-3a4485237de6

当前应用于NLP领域的Transformer,结构过于庞大,并不适用于股票数据(开盘价,收盘价,最高价,最低价,等)这样的时序数据,因此,本文提出一种简化的适用于股票数据的Transformer结构,其根据时间嵌入的思想构建,能很好的应用于量化选股中。下面以一个例子来介绍用于股票数据的Transformer体系结构,以及

更新时间:2021-02-03 07:05

分页第1页
{link}