DNN训练完成后测试机让没有计算出得分
通过克隆社区DNN选股,训练的模型能用在测试集上,在上面优化特征及调整损失函数后,出现模型训练完了,但是在测试集上全部为0,反复排查后找不到原因,因为这块被封装了,社区那位同学遇到同类问题,帮忙看看,非常感谢
https://bigquant.com/codesharev3/ba9e579f-7079-4ed9-bccb-d898619a87fb
\
更新时间:2024-10-10 10:56
通过上次在Cifar10上复现ResNet的结果,我们得到了上表,最后一栏是论文中的结果,可以看到已经最好的初始化方法(MSRA)已经和论文中的结果非常接近了!今天我们完全按照论文中的实验环境,复现一下ResNet论文中的结果。
上次的论文复现主要和原文中有两点不同:
Cifar10中的图像都是32X32的,论文中对测试集中的每张图
更新时间:2024-07-10 09:23
在机器学习模型建立过程中通常需要对模型中的超参数进行优化,本文给大家介绍超参优化模块,它可以帮助大家对我们平台上的机器学习模型进行超参数优化,让你的收益更上一层楼
在机器学习里,我们本质上是对损失函数进行最优化的过程。过程类似下面的曲面,算法试图去寻找损失曲面的全局最小值,当然损失曲面实际中不一定是凸曲面, 可能会更加凹凸不平,存在多个局部高低点。
我们还是回到主题,讲述的重点在于超参数
更新时间:2024-06-12 05:52
更新时间:2024-06-12 05:48
如何在全连接模块中自定义swish激活函数的代码
\
https://www.bilibili.com/video/BV1DL4y1w7sb?share_source=copy_web
[https://bigquant.com/experimentshare/9f1dae69e055429c9922b4f5d038361a](https://bigquant.com/experimentshare/9f1d
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
\
**徐啸寅
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
本文原载于how-to-start-a-deep-learning-project,并且在机器之心上有翻译(如何从零开始构建深度学习项目?这里有一份详细的教程)。
忽略中英文的标题,因为这并非是一个入门的详细教程,而是在深度学习应用中各个步骤阶段
更新时间:2024-05-20 02:09
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 09:05
老师您好,
我学习上面的视频文章,想试运行代码,但运行不下去,没办法回测,是我哪里没有配置对吗?谢谢老师!
\
# 我们取前0.6的数据量作为训练集
date = data['date'].unique
更新时间:2023-12-08 08:18
更新时间:2023-11-27 06:17
请问如何搭建简单的resnet
就给我展示最小单元好了
更新时间:2023-10-09 08:20
验证集通过这个端口传入,构造方法和训练集一样。只需要设定开始和结束的日期。
步长可以通过
![{w:100}{w:100}](/wiki/api/attachments.redirect?id=276f2f17-0d2e
更新时间:2023-10-09 07:35
https://bigquant.com/experimentshare/75aff243f241447da1d1994ed9d29c44
如何实现分类任务啊,怎么在原有策略上修改
更新时间:2023-10-09 07:05
可以发一个纯代码模型下参数优化的策略例子么?想学习一下纯代码下的参数寻优
更新时间:2023-10-09 02:22
传统的基于大类因子的因子加权方法可以抽象成简单的神经网络,指定损失函数后可以以一个时间截面数据作为批量通过基于梯度的优化算法学习大类因子内部的权重和大类间的权重
在一定的情形下,最小化预测收益率和实际收益率的均方误差等价于最大化ZSCORE的IC,基于均方误差学习参数相当于找到一组参数使得模型ZSCORE过去一段时间的平均IC最高。
如果不考虑大类因子的标准化层,基于大类的线性网络和简单线性网络等价,但之所以依然采用大类网络在于这种设计下更便于我们实践中对各个大类因子进行直接或者间接的干预
我们尝试了对量价总个大类的权重进行适当的控制,发现在对大类因子进行适当程度的干预
更新时间:2023-06-01 14:28
更新时间:2022-11-20 03:34
更新时间:2022-04-21 06:21
更新时间:2022-03-31 18:20
W-DCGAN模型可用于多资产金融时间序列生成,效果良好
本文探讨GAN的重要变式——DCGAN(深度卷积生成对抗网络)在生成多资产金融时间序列中的应用。原始GAN模型存在固有缺陷,DCGAN和WGAN分别从网络结构和损失函数的角度提出改进,将两种改进方案融合可得到W-DCGAN模型。测试各模型对多资产金融时间序列的生成效果,并采用9项单资产序列指标和5项多资产序列指标评价生成质量。结果表明DCGAN表现不理想,结合W距离损失函数的W-DCGAN效果好且略优于WGAN,W-DCGAN能较好地复现出真实序列的各项典型化事实。
**DCGAN的核心思想是针对网络结构改进原
更新时间:2021-11-26 07:50
机器学习里面究竟有多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。
在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即 线性回归 和 逻辑回归 。
线性回归就是我们前面说过的房价求解问题。如何拟合出一条直线最佳匹配我所有的数据?一般使用“最小二乘法”来求解。“最小二乘法”的思想是
更新时间:2021-08-18 06:37