复制链接
克隆策略

    {"description":"实验创建于2021/10/23","graph":{"edges":[{"to_node_id":"-306:instruments","from_node_id":"-293:data"},{"to_node_id":"-270:instruments","from_node_id":"-293:data"},{"to_node_id":"-651:instruments","from_node_id":"-293:data"},{"to_node_id":"-306:features","from_node_id":"-301:data"},{"to_node_id":"-313:features","from_node_id":"-301:data"},{"to_node_id":"-313:input_data","from_node_id":"-306:data"},{"to_node_id":"-2282:data1","from_node_id":"-313:data"},{"to_node_id":"-1576:input_data","from_node_id":"-55:data"},{"to_node_id":"-651:features","from_node_id":"-76:data"},{"to_node_id":"-658:features","from_node_id":"-76:data"},{"to_node_id":"-2278:input_data","from_node_id":"-1576:data"},{"to_node_id":"-658:input_data","from_node_id":"-651:data"},{"to_node_id":"-55:input_data","from_node_id":"-658:data"},{"to_node_id":"-2282:data2","from_node_id":"-2272:data"},{"to_node_id":"-2272:input_ds","from_node_id":"-2278:data"},{"to_node_id":"-270:feature_datas","from_node_id":"-2282:data"}],"nodes":[{"node_id":"-270","module_id":"BigQuantSpace.genetic_algorithm.genetic_algorithm-v1","parameters":[{"name":"all_start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"all_end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"short_date_range_ratio","value":"0.7","type":"Literal","bound_global_parameter":null},{"name":"return_field","value":"wap_3_vwap_buy","type":"Literal","bound_global_parameter":null},{"name":"rebalance_period","value":1,"type":"Literal","bound_global_parameter":null},{"name":"train_test_ratio","value":0.75,"type":"Literal","bound_global_parameter":null},{"name":"train_validate_ratio","value":0.75,"type":"Literal","bound_global_parameter":null},{"name":"mtime","value":"5","type":"Literal","bound_global_parameter":null},{"name":"init_ind_num","value":"50","type":"Literal","bound_global_parameter":null},{"name":"ngen","value":"5","type":"Literal","bound_global_parameter":null},{"name":"fitness_func","value":"long_return","type":"Literal","bound_global_parameter":null},{"name":"train_fitness","value":"2","type":"Literal","bound_global_parameter":null},{"name":"test_fitness","value":"1.6","type":"Literal","bound_global_parameter":null},{"name":"ir_type","value":"ir","type":"Literal","bound_global_parameter":null},{"name":"cxpb","value":0.5,"type":"Literal","bound_global_parameter":null},{"name":"mutpb","value":0.3,"type":"Literal","bound_global_parameter":null},{"name":"mutspb","value":0.3,"type":"Literal","bound_global_parameter":null},{"name":"mutnrpb","value":0.3,"type":"Literal","bound_global_parameter":null},{"name":"constant","value":"1,20","type":"Literal","bound_global_parameter":null},{"name":"pool_processes_limit","value":"4","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-270"},{"name":"feature_datas","node_id":"-270"},{"name":"base_features","node_id":"-270"}],"output_ports":[{"name":"factors","node_id":"-270"}],"cacheable":false,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2013-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-11-28","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-301","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0\nhigh_0\nlow_0\nlow_0\nturn_0\nreturn_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-301"}],"output_ports":[{"name":"data","node_id":"-301"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-306","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-306"},{"name":"features","node_id":"-306"}],"output_ports":[{"name":"data","node_id":"-306"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-313","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-313"},{"name":"features","node_id":"-313"}],"output_ports":[{"name":"data","node_id":"-313"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-55","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-55"}],"output_ports":[{"name":"data","node_id":"-55"},{"name":"left_data","node_id":"-55"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-76","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"buy_cond_1 = where(rank(mf_net_amount_m_0)>0.6, 1, 0)\nbuy_cond_2 = 1\nbuy_cond_3 = where(sum(price_limit_status_0==3, 5)==1, 1, 0)\n\n\n\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-76"}],"output_ports":[{"name":"data","node_id":"-76"}],"cacheable":true,"seq_num":7,"comment":"条件过滤","comment_collapsed":false},{"node_id":"-1576","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"buy_cond_1==1&buy_cond_3==1","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1576"}],"output_ports":[{"name":"data","node_id":"-1576"},{"name":"left_data","node_id":"-1576"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-651","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-651"},{"name":"features","node_id":"-651"}],"output_ports":[{"name":"data","node_id":"-651"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-658","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-658"},{"name":"features","node_id":"-658"}],"output_ports":[{"name":"data","node_id":"-658"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-2272","module_id":"BigQuantSpace.select_columns.select_columns-v3","parameters":[{"name":"columns","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"reverse_select","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-2272"},{"name":"columns_ds","node_id":"-2272"}],"output_ports":[{"name":"data","node_id":"-2272"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-2278","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-2278"},{"name":"features","node_id":"-2278"}],"output_ports":[{"name":"data","node_id":"-2278"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2282","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-2282"},{"name":"data2","node_id":"-2282"}],"output_ports":[{"name":"data","node_id":"-2282"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-270' Position='-178.6975555419922,500.3927917480469,200,200'/><node_position Node='-293' Position='-244,-142,200,200'/><node_position Node='-301' Position='59,-139,200,200'/><node_position Node='-306' Position='42,-48,200,200'/><node_position Node='-313' Position='28,28,200,200'/><node_position Node='-55' Position='446,97,200,200'/><node_position Node='-76' Position='484,-178,200,200'/><node_position Node='-1576' Position='444,159,200,200'/><node_position Node='-651' Position='455,-67,200,200'/><node_position Node='-658' Position='445,36,200,200'/><node_position Node='-2272' Position='443,281,200,200'/><node_position Node='-2278' Position='444,218,200,200'/><node_position Node='-2282' Position='115,366,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [20]:
    # 本代码由可视化策略环境自动生成 2022年11月29日 20:05
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    m2 = M.instruments.v2(
        start_date='2013-01-01',
        end_date='2022-11-28',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m3 = M.input_features.v1(
        features="""close_0
    high_0
    low_0
    low_0
    turn_0
    return_0"""
    )
    
    m4 = M.general_feature_extractor.v7(
        instruments=m2.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m5 = M.derived_feature_extractor.v3(
        input_data=m4.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m7 = M.input_features.v1(
        features="""buy_cond_1 = where(rank(mf_net_amount_m_0)>0.6, 1, 0)
    buy_cond_2 = 1
    buy_cond_3 = where(sum(price_limit_status_0==3, 5)==1, 1, 0)
    
    
    
    
    """
    )
    
    m9 = M.general_feature_extractor.v7(
        instruments=m2.data,
        features=m7.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m10 = M.derived_feature_extractor.v3(
        input_data=m9.data,
        features=m7.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m6 = M.chinaa_stock_filter.v1(
        input_data=m10.data,
        index_constituent_cond=['全部'],
        board_cond=['上证主板', '深证主板'],
        industry_cond=['全部'],
        st_cond=['正常'],
        delist_cond=['非退市'],
        output_left_data=False
    )
    
    m8 = M.filter.v3(
        input_data=m6.data,
        expr='buy_cond_1==1&buy_cond_3==1',
        output_left_data=False
    )
    
    m11 = M.dropnan.v2(
        input_data=m8.data
    )
    
    m13 = M.select_columns.v3(
        input_ds=m11.data,
        columns='date,instrument',
        reverse_select=False
    )
    
    m14 = M.join.v3(
        data1=m5.data,
        data2=m13.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m1 = M.genetic_algorithm.v1(
        instruments=m2.data,
        feature_datas=m14.data,
        all_start_date='',
        all_end_date='',
        short_date_range_ratio=0.7,
        return_field='wap_3_vwap_buy',
        rebalance_period=1,
        train_test_ratio=0.75,
        train_validate_ratio=0.75,
        mtime=5,
        init_ind_num=50,
        ngen=5,
        fitness_func='long_return',
        train_fitness=2,
        test_fitness=1.6,
        ir_type='ir',
        cxpb=0.5,
        mutpb=0.3,
        mutspb=0.3,
        mutnrpb=0.3,
        constant='1,20',
        pool_processes_limit=4,
        m_cached=False
    )
    
    -- 开始第「1」次循环第「1」代挖掘 --
    
    去重前的个体数50
    去重后的个体数49
    
    每代的平均适应度:[-0.2738027653629295]
    因子log(low_0)在训练集适应度值为-0.847220597544614
    因子ts_argmin(close_0, 8)在训练集适应度值为0.42078871309146804
    因子ts_argmin(ts_max(close_0, 18), constant(7))在训练集适应度值为0.07853387426701278
    因子min(high_0, low_0)在训练集适应度值为-0.8461702830903864
    因子decay_linear(ta_sma(close_0, 12), constant(16))在训练集适应度值为-0.5442676954455469
    因子covariance(ts_argmin(close_0, 19), ts_rank(high_0, 3), constant(5))在训练集适应度值为-1.6639930839518235
    因子sign(mul(close_0, high_0))在训练集适应度值为nan
    因子std(delta(close_0, 10), constant(19))在训练集适应度值为-0.04687075206909976
    因子std(rank(close_0), constant(14))在训练集适应度值为0.6193600807392645
    因子shift(add(high_0, turn_0), constant(14))在训练集适应度值为-1.2717230224575728
    因子delta(delta(high_0, 2), constant(18))在训练集适应度值为-0.20261144134076797
    因子div(return_0, close_0)在训练集适应度值为-0.5836768917215
    因子add(low_0, turn_0)在训练集适应度值为-0.7920291887922869
    因子ta_sma(return_0, 18)在训练集适应度值为-1.9203850273613516
    因子max(return_0, close_0)在训练集适应度值为0.14035111021092236
    因子product(ts_max(low_0, 9), constant(9))在训练集适应度值为-0.7773842410113363
    因子covariance(delta(high_0, 11), rank(close_0), constant(17))在训练集适应度值为nan
    因子log(shift(turn_0, 17))在训练集适应度值为-1.8366732019066274
    因子sign(turn_0)在训练集适应度值为nan
    因子ts_max(sum(turn_0, 1), 3)在训练集适应度值为-0.06266567591521112
    因子ts_rank(low_0, 16)在训练集适应度值为0.10490920396445996
    因子ta_sma(close_0, 15)在训练集适应度值为-3.7568318205217444
    因子ta_sma(ts_max(high_0, 3), constant(10))在训练集适应度值为-0.940452359562614
    因子max(high_0, high_0)在训练集适应度值为-0.899352179349475
    因子sub(return_0, close_0)在训练集适应度值为-1.475189792486048
    因子ta_sma(close_0, constant(1))在训练集适应度值为-0.8476981027065214
    因子sign(return_0)在训练集适应度值为nan
    因子sign(close_0)在训练集适应度值为nan
    因子ts_argmin(return_0, 18)在训练集适应度值为-1.281120670316755
    因子abs(close_0)在训练集适应度值为-0.8476981027065214
    因子ts_rank(mul(high_0, turn_0), constant(13))在训练集适应度值为-1.1460896941620564
    因子abs(high_0)在训练集适应度值为-0.899352179349475
    因子sum(ts_argmin(close_0, 6), constant(7))在训练集适应度值为-1.8119965975168904
    因子rank(rank(low_0))在训练集适应度值为-1.1049881671487574
    因子ts_argmax(close_0, 3)在训练集适应度值为-0.737739969976222
    因子sub(close_0, return_0)在训练集适应度值为-0.8404777025764927
    因子add(sum(return_0, 6), sign(close_0))在训练集适应度值为-3.3752910680481265
    因子shift(div(turn_0, return_0), constant(11))在训练集适应度值为-0.838788711029345
    因子std(close_0, 18)在训练集适应度值为-1.2413226905087422
    因子sub(return_0, low_0)在训练集适应度值为-1.4306067269442628
    因子sub(std(return_0, 7), abs(close_0))在训练集适应度值为-2.1288198025409577
    因子std(close_0, 4)在训练集适应度值为-2.923039155975881
    因子abs(low_0)在训练集适应度值为-0.8461702830903864
    因子ts_rank(min(turn_0, high_0), constant(5))在训练集适应度值为-2.729825259010692
    因子abs(close_0)在训练集适应度值为0.14035111021092236
    因子div(close_0, high_0)在训练集适应度值为0.05660707655052985
    因子normalize(turn_0)在训练集适应度值为-1.0095106446031976
    因子ts_rank(close_0, 17)在训练集适应度值为-0.6902404967434357
    因子std(return_0, 19)在训练集适应度值为-2.2044815845879175
    
    pass:0, record:49, population: 49
    
    下一代挖掘的个体数:50
    
    -- 开始第「1」次循环第「2」代挖掘 --
    
    去重前的个体数50
    去重后的个体数39
    
    每代的平均适应度:[-0.2738027653629295, -0.1533942166524678]
    因子sign(turn_0)在训练集适应度值为nan
    因子std(ts_argmax(high_0, 10), constant(19))在训练集适应度值为-0.8764438650023553
    因子std(delta(turn_0, 10), constant(19))在训练集适应度值为nan
    因子add(low_0, close_0)在训练集适应度值为-0.8772729954380408
    因子shift(div(turn_0, return_0), constant(10))在训练集适应度值为-0.9141177014639519
    因子ta_sma(ts_max(high_0, 3), constant(11))在训练集适应度值为-0.7183303537781918
    因子ta_sma(turn_0, constant(constant(14)))在训练集适应度值为-3.081813868755839
    因子ts_min(high_0, 11)在训练集适应度值为-5.449331629863915
    因子ts_rank(mul(close_0, turn_0), constant(16))在训练集适应度值为-0.2286126293780266
    因子close_0在训练集适应度值为-0.8476981027065214
    因子product(ts_max(low_0, 9), 6)在训练集适应度值为-2.1128120503367915
    因子add(sum(return_0, constant(9)), sign(turn_0))在训练集适应度值为-4.435923723312808
    因子abs(close_0)在训练集适应度值为0.14035111021092236
    因子high_0在训练集适应度值为-0.899352179349475
    因子abs(shift(low_0, 13))在训练集适应度值为-0.8903800058377234
    因子div(return_0, close_0)在训练集适应度值为-0.5836768917215
    因子add(sub(sign(high_0), ts_min(close_0, 12)), turn_0)在训练集适应度值为-1.6055219280681392
    因子sign(high_0)在训练集适应度值为nan
    因子min(close_0, close_0)在训练集适应度值为-0.8769926368339077
    因子close_0在训练集适应度值为0.14035111021092236
    因子abs(ts_argmin(abs(low_0), constant(4)))在训练集适应度值为-2.045488390813027
    因子ts_argmax(turn_0, 3)在训练集适应度值为-0.8394161576852793
    因子ts_rank(low_0, 16)在训练集适应度值为0.10490920396445996
    因子std(close_0, 17)在训练集适应度值为-0.6763227054273472
    因子decay_linear(ta_sma(close_0, 12), constant(3))在训练集适应度值为-2.7777710946394074
    因子log(high_0)在训练集适应度值为-0.6118414256911656
    因子std(close_0, 12)在训练集适应度值为0.3558806720017928
    因子min(close_0, turn_0)在训练集适应度值为0.16515545625051445
    因子std(rank(high_0), 14)在训练集适应度值为-3.4123198007405695
    因子sign(close_0)在训练集适应度值为nan
    因子product(close_0, constant(10))在训练集适应度值为nan
    因子product(ts_max(low_0, 13), constant(9))在训练集适应度值为-0.3511799577797139
    因子div(close_0, return_0)在训练集适应度值为-0.9283699579006698
    因子sub(high_0, close_0)在训练集适应度值为-1.3345772507359064
    因子ta_sma(covariance(turn_0, return_0, 1), 10)在训练集适应度值为nan
    因子ts_max(turn_0, 3)在训练集适应度值为-0.06266567591521112
    因子return_0在训练集适应度值为2.966799078652266
    因子ts_argmin(close_0, constant(7))在训练集适应度值为-1.3115341009466914
    因子decay_linear(sub(close_0, close_0), constant(16))在训练集适应度值为nan
    
    因子return_0在测试集适应度值为2.1723126285272114
    
    pass:1, record:39, population: 1
    
    下一代挖掘的个体数:50
    
    -- 开始第「1」次循环第「3」代挖掘 --
    
    去重前的个体数50
    去重后的个体数16
    
    每代的平均适应度:[-0.2738027653629295, -0.1533942166524678, -0.05753210349173473]
    因子return_0在训练集适应度值为2.966799078652266
    因子high_0在训练集适应度值为-0.899352179349475
    因子low_0在训练集适应度值为-0.8461702830903864
    因子sign(turn_0)在训练集适应度值为nan
    因子ta_sma(close_0, 16)在训练集适应度值为-0.06618461723304775
    因子turn_0在训练集适应度值为-1.0095106446031976
    因子rank(return_0)在训练集适应度值为1.7852849197233474
    因子add(return_0, high_0)在训练集适应度值为-0.9122344142764752
    因子sum(low_0, 17)在训练集适应度值为-1.5074129446956548
    因子close_0在训练集适应度值为0.14035111021092236
    因子normalize(high_0)在训练集适应度值为-0.899352179349475
    因子mul(close_0, close_0)在训练集适应度值为0.1608372100452606
    因子div(high_0, return_0)在训练集适应度值为-0.8780738497862343
    因子div(rank(turn_0), shift(close_0, 18))在训练集适应度值为0.23824588697268545
    因子close_0在训练集适应度值为-0.8476981027065214
    因子sub(ts_argmin(low_0, 9), sum(high_0, 13))在训练集适应度值为-3.9785083535177543
    
    因子return_0在测试集适应度值为2.1723126285272114
    
    pass:1, record:16, population: 1
    
    下一代挖掘的个体数:50
    
    -- 开始第「1」次循环第「4」代挖掘 --
    
    去重前的个体数50
    去重后的个体数14
    
    每代的平均适应度:[-0.2738027653629295, -0.1533942166524678, -0.05753210349173473, 0.025449858394693388]
    因子return_0在训练集适应度值为2.966799078652266
    因子sum(high_0, 6)在训练集适应度值为-2.3394128180590346
    因子abs(product(low_0, 7))在训练集适应度值为nan
    因子delta(delta(return_0, 10), constant(16))在训练集适应度值为-0.04377193690166693
    因子high_0在训练集适应度值为-0.899352179349475
    因子ts_max(ts_argmin(turn_0, 1), constant(19))在训练集适应度值为nan
    因子ts_argmin(close_0, 16)在训练集适应度值为-1.213333444320314
    因子delta(ts_min(turn_0, 14), constant(13))在训练集适应度值为nan
    因子ta_sma(product(close_0, 19), 14)在训练集适应度值为nan
    因子correlation(low_0, low_0, 3)在训练集适应度值为-3.5603649803835524
    因子sign(turn_0)在训练集适应度值为nan
    因子ts_rank(close_0, 9)在训练集适应度值为2.7045461120317955
    因子ts_max(turn_0, 4)在训练集适应度值为-3.015904057413945
    因子decay_linear(abs(close_0), constant(4))在训练集适应度值为-0.026533926533481866
    
    因子return_0在测试集适应度值为2.1723126285272114
    因子ts_rank(close_0, 9)在测试集适应度值为1.3116798891217518
    
    pass:2, record:14, population: 2
    
    下一代挖掘的个体数:50
    
    -- 开始第「1」次循环第「5」代挖掘 --
    
    去重前的个体数50
    去重后的个体数18
    
    每代的平均适应度:[-0.2738027653629295, -0.1533942166524678, -0.05753210349173473, 0.025449858394693388, -0.07816066142339342]
    因子ts_rank(high_0, 3)在训练集适应度值为-1.5764511980677924
    因子return_0在训练集适应度值为2.966799078652266
    因子close_0在训练集适应度值为0.14035111021092236
    因子ts_max(normalize(low_0), 3)在训练集适应度值为-0.5484913318584094
    因子ts_rank(turn_0, 9)在训练集适应度值为-2.370529821214508
    因子ts_rank(close_0, constant(13))在训练集适应度值为2.6800127722831015
    因子ts_rank(close_0, 9)在训练集适应度值为2.7045461120317955
    因子product(high_0, 14)在训练集适应度值为nan
    因子add(product(turn_0, 1), sum(high_0, 2))在训练集适应度值为-1.463192088023135
    因子covariance(high_0, turn_0, 6)在训练集适应度值为-1.484265407073137
    因子high_0在训练集适应度值为-0.899352179349475
    因子log(low_0)在训练集适应度值为-0.847220597544614
    因子decay_linear(turn_0, 16)在训练集适应度值为-1.4896957797821841
    因子ts_rank(abs(abs(low_0)), 9)在训练集适应度值为-3.499501917868069
    因子ts_rank(rank(high_0), 13)在训练集适应度值为-2.312004024739744
    因子product(ts_argmin(low_0, 6), 12)在训练集适应度值为-0.10486795222274098
    因子shift(low_0, 10)在训练集适应度值为0.18329108589716633
    因子product(add(close_0, high_0), constant(15))在训练集适应度值为nan
    
    因子return_0在测试集适应度值为2.1723126285272114
    因子ts_rank(close_0, constant(13))在测试集适应度值为1.3850911276549203
    因子ts_rank(close_0, 9)在测试集适应度值为1.3116798891217518
    
    pass:3, record:18, population: 3
    
    下一代挖掘的个体数:50
    
    -- 开始第「2」次循环第「1」代挖掘 --
    
    去重前的个体数50
    去重后的个体数49
    
    每代的平均适应度:[-0.22162481765687597]
    因子decay_linear(ts_argmax(return_0, 15), constant(5))在训练集适应度值为-3.255916945171633
    因子ts_min(close_0, 14)在训练集适应度值为-2.9749603943114997
    因子mul(high_0, high_0)在训练集适应度值为-1.0634617832595352
    因子delta(high_0, constant(6))在训练集适应度值为-2.763583386899871
    因子correlation(close_0, low_0, 16)在训练集适应度值为nan
    因子product(return_0, 7)在训练集适应度值为nan
    因子ta_sma(sum(return_0, 18), constant(14))在训练集适应度值为-1.5819005821900975
    因子min(low_0, return_0)在训练集适应度值为2.966799078652266
    因子sub(sign(close_0), decay_linear(high_0, 17))在训练集适应度值为-2.2919324879921392
    因子mul(sub(high_0, high_0), ts_max(turn_0, 11))在训练集适应度值为nan
    因子max(close_0, turn_0)在训练集适应度值为-0.9578157279076831
    因子covariance(min(high_0, close_0), normalize(low_0), constant(5))在训练集适应度值为-1.9456774535258874
    因子ts_max(sum(close_0, 16), constant(19))在训练集适应度值为-0.9455432247114686
    因子sub(return_0, close_0)在训练集适应度值为-1.3805321686331393
    因子add(normalize(low_0), log(return_0))在训练集适应度值为0.06002265857071834
    因子correlation(close_0, return_0, 11)在训练集适应度值为-2.9163817073416767
    因子sign(close_0)在训练集适应度值为nan
    因子sign(high_0)在训练集适应度值为nan
    因子ts_max(low_0, 14)在训练集适应度值为-3.2741322369498986
    因子product(high_0, 5)在训练集适应度值为0.04568362491213082
    因子covariance(low_0, turn_0, 15)在训练集适应度值为-2.4822536311708405
    因子product(close_0, 8)在训练集适应度值为0.28544347516176594
    因子normalize(close_0)在训练集适应度值为-0.8476981027065214
    因子sub(product(return_0, 16), ta_sma(close_0, 2))在训练集适应度值为nan
    因子ts_argmax(return_0, 15)在训练集适应度值为-4.510281164611354
    因子ta_sma(high_0, 1)在训练集适应度值为-0.899352179349475
    因子product(ts_argmin(turn_0, 11), constant(8))在训练集适应度值为-1.285002624627623
    因子add(low_0, high_0)在训练集适应度值为-0.9330158117378282
    因子log(ts_min(high_0, 18))在训练集适应度值为-1.2514850494837677
    因子max(close_0, return_0)在训练集适应度值为-0.8734474736300971
    因子ts_rank(low_0, 11)在训练集适应度值为-2.9455933024584957
    因子correlation(turn_0, return_0, 18)在训练集适应度值为-1.0652736710618553
    因子covariance(close_0, return_0, 5)在训练集适应度值为-3.0638004228753037
    因子log(close_0)在训练集适应度值为-0.7388599896612504
    因子normalize(turn_0)在训练集适应度值为-1.0095106446031976
    因子abs(normalize(return_0))在训练集适应度值为2.3035683440953063
    因子ts_min(close_0, 17)在训练集适应度值为-0.05878917230029014
    因子div(product(turn_0, 10), shift(turn_0, 19))在训练集适应度值为nan
    因子decay_linear(product(high_0, 3), constant(1))在训练集适应度值为-3.3202068154424724
    因子ts_argmax(mul(return_0, close_0), constant(2))在训练集适应度值为-0.9642428654357448
    因子abs(high_0)在训练集适应度值为-0.899352179349475
    因子std(return_0, 16)在训练集适应度值为-1.6437414136796569
    因子correlation(high_0, close_0, 14)在训练集适应度值为-3.579523123831351
    因子covariance(sub(high_0, low_0), div(return_0, close_0), constant(7))在训练集适应度值为-2.3214873572281984
    因子abs(return_0)在训练集适应度值为2.966799078652266
    因子ts_argmin(high_0, 10)在训练集适应度值为-3.5020479795797477
    因子sum(close_0, 14)在训练集适应度值为-3.4152529294804266
    因子ts_max(mul(turn_0, low_0), constant(17))在训练集适应度值为-1.499814787548442
    因子ts_min(std(low_0, 2), constant(16))在训练集适应度值为nan
    
    因子min(low_0, return_0)在测试集适应度值为2.1723126285272114
    因子abs(normalize(return_0))在测试集适应度值为1.1823197177888314
    因子abs(return_0)在测试集适应度值为2.1723126285272114
    
    pass:3, record:49, population: 3
    
    下一代挖掘的个体数:50
    
    -- 开始第「2」次循环第「2」代挖掘 --
    
    去重前的个体数50
    去重后的个体数22
    
    每代的平均适应度:[-0.22162481765687597, 0.009896131336176913]
    因子min(low_0, return_0)在训练集适应度值为2.966799078652266
    因子min(low_0, div(close_0, close_0))在训练集适应度值为-0.7189301118248982
    因子sign(low_0)在训练集适应度值为nan
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子close_0在训练集适应度值为-0.8476981027065214
    因子abs(high_0)在训练集适应度值为-0.899352179349475
    因子min(close_0, return_0)在训练集适应度值为2.966799078652266
    因子abs(close_0)在训练集适应度值为0.14035111021092236
    因子abs(return_0)在训练集适应度值为2.966799078652266
    因子min(low_0, close_0)在训练集适应度值为-0.8461702830903864
    因子abs(div(decay_linear(return_0, 11), sign(close_0)))在训练集适应度值为-3.8582073812226394
    因子min(low_0, low_0)在训练集适应度值为-0.8461702830903864
    因子abs(close_0)在训练集适应度值为-0.8476981027065214
    因子low_0在训练集适应度值为-0.8461702830903864
    因子min(div(close_0, high_0), return_0)在训练集适应度值为0.5238838373047799
    因子abs(low_0)在训练集适应度值为-0.8461702830903864
    因子min(low_0, turn_0)在训练集适应度值为-1.0206958199547311
    因子abs(turn_0)在训练集适应度值为-1.0095106446031976
    因子min(low_0, ts_max(div(low_0, close_0), constant(5)))在训练集适应度值为-0.008109751271399648
    因子abs(max(ts_rank(close_0, 1), ts_argmin(low_0, 14)))在训练集适应度值为-3.5487702993626535
    因子log(normalize(return_0))在训练集适应度值为nan
    因子abs(normalize(low_0))在训练集适应度值为-1.8110428924569142
    
    因子min(low_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(close_0, return_0)在测试集适应度值为2.1723126285272114
    因子abs(return_0)在测试集适应度值为2.1723126285272114
    
    pass:4, record:22, population: 4
    
    下一代挖掘的个体数:50
    
    -- 开始第「2」次循环第「3」代挖掘 --
    
    去重前的个体数50
    去重后的个体数24
    
    每代的平均适应度:[-0.22162481765687597, 0.009896131336176913, 0.047010060860965916]
    因子abs(turn_0)在训练集适应度值为-1.0095106446031976
    因子min(add(covariance(low_0, low_0, 14), abs(low_0)), return_0)在训练集适应度值为-1.2723635994027398
    因子min(return_0, turn_0)在训练集适应度值为3.2711429509050887
    因子min(turn_0, close_0)在训练集适应度值为-1.043982278327278
    因子min(low_0, close_0)在训练集适应度值为-0.8461702830903864
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子min(low_0, low_0)在训练集适应度值为-0.8461702830903864
    因子min(sub(turn_0, return_0), return_0)在训练集适应度值为3.2619590214153305
    因子min(close_0, return_0)在训练集适应度值为2.966799078652266
    因子min(low_0, return_0)在训练集适应度值为2.966799078652266
    因子sum(turn_0, 16)在训练集适应度值为-1.4949517055855637
    因子min(abs(correlation(high_0, low_0, 10)), low_0)在训练集适应度值为-3.1172042944212017
    因子abs(close_0)在训练集适应度值为-0.8476981027065214
    因子abs(return_0)在训练集适应度值为2.966799078652266
    因子std(div(low_0, high_0), constant(2))在训练集适应度值为-0.15731177357560613
    因子min(return_0, min(close_0, high_0))在训练集适应度值为2.966799078652266
    因子abs(delta(return_0, 18))在训练集适应度值为-2.8927327209011424
    因子abs(sum(ts_max(turn_0, 1), constant(5)))在训练集适应度值为-2.9946197138296333
    因子ta_sma(return_0, 8)在训练集适应度值为0.35384982669713777
    因子return_0在训练集适应度值为2.966799078652266
    因子min(close_0, ts_max(correlation(high_0, turn_0, 17), constant(7)))在训练集适应度值为-0.8766776948515331
    因子std(high_0, 1)在训练集适应度值为nan
    因子std(return_0, 15)在训练集适应度值为-4.038787098547623
    因子add(decay_linear(close_0, 19), std(low_0, 17))在训练集适应度值为-1.7325018938315833
    
    因子min(return_0, turn_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(sub(turn_0, return_0), return_0)在测试集适应度值为1.3114825088664688
    因子min(close_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(low_0, return_0)在测试集适应度值为2.1723126285272114
    因子abs(return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, min(close_0, high_0))在测试集适应度值为2.1723126285272114
    因子return_0在测试集适应度值为2.1723126285272114
    
    pass:8, record:24, population: 8
    
    下一代挖掘的个体数:50
    
    -- 开始第「2」次循环第「4」代挖掘 --
    
    去重前的个体数50
    去重后的个体数30
    
    每代的平均适应度:[-0.22162481765687597, 0.009896131336176913, 0.047010060860965916, 0.2097928184381592]
    因子min(low_0, close_0)在训练集适应度值为-0.8461702830903864
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(turn_0, return_0)在训练集适应度值为3.2711429509050887
    因子min(delta(ts_max(high_0, 19), constant(7)), return_0)在训练集适应度值为-0.08023304999185518
    因子min(return_0, min(high_0, return_0))在训练集适应度值为2.966799078652266
    因子min(high_0, return_0)在训练集适应度值为2.966799078652266
    因子min(low_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, min(turn_0, high_0))在训练集适应度值为3.2711429509050887
    因子min(rank(close_0), return_0)在训练集适应度值为2.963728880828274
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子abs(return_0)在训练集适应度值为2.966799078652266
    因子sub(close_0, return_0)在训练集适应度值为-0.8829170997042474
    因子low_0在训练集适应度值为-0.8461702830903864
    因子add(ts_argmax(low_0, 1), ts_argmax(high_0, 7))在训练集适应度值为-3.409735852526271
    因子return_0在训练集适应度值为2.966799078652266
    因子min(close_0, return_0)在训练集适应度值为2.966799078652266
    因子abs(abs(low_0))在训练集适应度值为-0.8461702830903864
    因子min(low_0, turn_0)在训练集适应度值为-1.0206958199547311
    因子abs(ts_min(sign(return_0), constant(6)))在训练集适应度值为nan
    因子close_0在训练集适应度值为-0.8476981027065214
    因子min(covariance(close_0, close_0, 11), correlation(close_0, close_0, 6))在训练集适应度值为-2.6332952595239063
    因子abs(log(covariance(low_0, high_0, 19)))在训练集适应度值为-2.2181267182800313
    因子ts_argmax(covariance(return_0, return_0, 1), constant(19))在训练集适应度值为nan
    因子min(min(close_0, high_0), return_0)在训练集适应度值为0.17082496878096806
    因子mul(low_0, abs(close_0))在训练集适应度值为-0.9817661644831495
    因子min(return_0, min(close_0, correlation(turn_0, turn_0, 18)))在训练集适应度值为2.9550271039749743
    因子ts_argmin(turn_0, 18)在训练集适应度值为-1.2446830011968495
    因子abs(ts_max(div(close_0, high_0), constant(9)))在训练集适应度值为-1.7352932308711693
    因子ts_argmin(abs(high_0), constant(10))在训练集适应度值为-3.5020479795797477
    因子min(close_0, return_0)在训练集适应度值为0.17082496878096806
    
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(turn_0, return_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, min(high_0, return_0))在测试集适应度值为2.1723126285272114
    因子min(high_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(low_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, min(turn_0, high_0))在测试集适应度值为1.9628287395834418
    因子min(rank(close_0), return_0)在测试集适应度值为2.1575357966465836
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子abs(return_0)在测试集适应度值为2.1723126285272114
    因子return_0在测试集适应度值为2.1723126285272114
    因子min(close_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, min(close_0, correlation(turn_0, turn_0, 18)))在测试集适应度值为2.1652870594547
    
    pass:12, record:30, population: 12
    
    下一代挖掘的个体数:50
    
    -- 开始第「2」次循环第「5」代挖掘 --
    
    去重前的个体数50
    去重后的个体数31
    
    每代的平均适应度:[-0.22162481765687597, 0.009896131336176913, 0.047010060860965916, 0.2097928184381592, 0.21774420625238206]
    因子min(turn_0, close_0)在训练集适应度值为-1.043982278327278
    因子min(return_0, min(return_0, turn_0))在训练集适应度值为3.2711429509050887
    因子min(low_0, close_0)在训练集适应度值为-0.8461702830903864
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子min(high_0, return_0)在训练集适应度值为2.966799078652266
    因子min(turn_0, high_0)在训练集适应度值为-1.0412213003259672
    因子return_0在训练集适应度值为2.966799078652266
    因子min(high_0, sum(ts_min(low_0, 8), constant(14)))在训练集适应度值为-0.899352179349475
    因子ts_rank(turn_0, 1)在训练集适应度值为nan
    因子high_0在训练集适应度值为-0.899352179349475
    因子sign(return_0)在训练集适应度值为nan
    因子min(rank(return_0), return_0)在训练集适应度值为2.963082671909163
    因子min(turn_0, return_0)在训练集适应度值为3.2711429509050887
    因子abs(return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, high_0)在训练集适应度值为2.966799078652266
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子close_0在训练集适应度值为-0.8476981027065214
    因子ts_argmax(low_0, 7)在训练集适应度值为-0.8036525730054513
    因子low_0在训练集适应度值为-0.8461702830903864
    因子ts_argmax(ts_max(turn_0, 3), 18)在训练集适应度值为-0.6942503873747207
    因子turn_0在训练集适应度值为-1.0095106446031976
    因子min(return_0, min(low_0, close_0))在训练集适应度值为2.966799078652266
    因子min(return_0, min(high_0, correlation(turn_0, high_0, 17)))在训练集适应度值为2.957291807050486
    因子min(high_0, high_0)在训练集适应度值为-0.899352179349475
    因子min(low_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(return_0, delta(log(low_0), constant(18)), 18))在训练集适应度值为2.966799078652266
    因子abs(low_0)在训练集适应度值为-0.8461702830903864
    因子min(return_0, mul(high_0, return_0))在训练集适应度值为2.966799078652266
    因子min(return_0, min(high_0, return_0))在训练集适应度值为2.966799078652266
    因子min(low_0, sum(sum(close_0, 16), constant(15)))在训练集适应度值为-0.8461702830903864
    因子min(return_0, low_0)在训练集适应度值为2.966799078652266
    
    因子min(return_0, min(return_0, turn_0))在测试集适应度值为1.9628287395834418
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(high_0, return_0)在测试集适应度值为2.1723126285272114
    因子return_0在测试集适应度值为2.1723126285272114
    因子min(rank(return_0), return_0)在测试集适应度值为2.1723126285272114
    因子min(turn_0, return_0)在测试集适应度值为1.9628287395834418
    因子abs(return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, high_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, min(low_0, close_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, min(high_0, correlation(turn_0, high_0, 17)))在测试集适应度值为2.152618627170182
    因子min(low_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(return_0, delta(log(low_0), constant(18)), 18))在测试集适应度值为2.1723126285272114
    因子min(return_0, mul(high_0, return_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, min(high_0, return_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, low_0)在测试集适应度值为2.1723126285272114
    
    pass:16, record:31, population: 16
    
    下一代挖掘的个体数:50
    
    -- 开始第「3」次循环第「1」代挖掘 --
    
    去重前的个体数50
    去重后的个体数48
    
    每代的平均适应度:[-0.15718277761270463]
    因子correlation(close_0, high_0, 8)在训练集适应度值为-0.14620283666192374
    因子ta_sma(close_0, 17)在训练集适应度值为-0.07597288567346074
    因子ta_sma(turn_0, 18)在训练集适应度值为-0.3000703798474867
    因子ts_argmax(close_0, 16)在训练集适应度值为-0.9016420815689645
    因子log(low_0)在训练集适应度值为-0.847220597544614
    因子ta_sma(ts_min(return_0, 17), constant(7))在训练集适应度值为-1.7258049287656432
    因子std(shift(turn_0, 19), constant(6))在训练集适应度值为-0.5948990474972838
    因子min(correlation(close_0, low_0, 13), ts_max(turn_0, 19))在训练集适应度值为-3.413139819925143
    因子normalize(min(low_0, high_0))在训练集适应度值为-0.8461702830903864
    因子rank(high_0)在训练集适应度值为-1.107530300523381
    因子sub(shift(return_0, 2), std(high_0, 18))在训练集适应度值为-0.8014266550915874
    因子ts_max(min(turn_0, high_0), constant(6))在训练集适应度值为-2.1605006802125235
    因子shift(return_0, 17)在训练集适应度值为-3.1806715171522106
    因子min(return_0, low_0)在训练集适应度值为2.966799078652266
    因子delta(turn_0, 9)在训练集适应度值为-2.452685464777236
    因子decay_linear(turn_0, 15)在训练集适应度值为-4.019256897340393
    因子ts_argmin(close_0, 18)在训练集适应度值为0.10988614498469906
    因子div(ts_max(return_0, 3), shift(close_0, 15))在训练集适应度值为-1.212965748738417
    因子decay_linear(sub(turn_0, return_0), constant(12))在训练集适应度值为-2.512605426593555
    因子product(div(close_0, low_0), constant(16))在训练集适应度值为nan
    因子std(close_0, 2)在训练集适应度值为1.913742971232113
    因子sum(ts_min(low_0, 14), constant(18))在训练集适应度值为-1.3817208918870223
    因子shift(sub(high_0, close_0), constant(5))在训练集适应度值为-0.6946585741529455
    因子ts_argmin(turn_0, 19)在训练集适应度值为-2.0348627299267292
    因子rank(close_0)在训练集适应度值为0.48771240495264867
    因子ts_argmin(div(return_0, close_0), constant(12))在训练集适应度值为-3.652992631444229
    因子sum(turn_0, 3)在训练集适应度值为-1.8452283843741886
    因子correlation(return_0, close_0, 14)在训练集适应度值为nan
    因子ts_rank(high_0, 5)在训练集适应度值为-2.3728923053792563
    因子sub(close_0, low_0)在训练集适应度值为0.4082658046298504
    因子ts_rank(low_0, 10)在训练集适应度值为-1.7511366035563576
    因子ta_sma(ts_min(close_0, 3), constant(9))在训练集适应度值为-0.7694522737217591
    因子min(low_0, high_0)在训练集适应度值为-0.8461702830903864
    因子shift(low_0, 3)在训练集适应度值为-0.6610020890895318
    因子normalize(close_0)在训练集适应度值为-0.8476981027065214
    因子ta_sma(shift(close_0, 3), constant(16))在训练集适应度值为-0.07507120860751741
    因子ts_argmax(normalize(low_0), constant(11))在训练集适应度值为-4.377335056887826
    因子ta_sma(turn_0, 6)在训练集适应度值为-2.484513488533871
    因子normalize(sum(turn_0, 1))在训练集适应度值为-1.0095106446031976
    因子product(close_0, constant(18))在训练集适应度值为0.38405903216333487
    因子normalize(high_0)在训练集适应度值为-0.899352179349475
    因子sum(close_0, 19)在训练集适应度值为-2.383105769571088
    因子ts_max(std(return_0, 1), constant(15))在训练集适应度值为nan
    因子sign(high_0)在训练集适应度值为nan
    因子ts_argmax(ta_sma(close_0, 14), constant(16))在训练集适应度值为-0.1849891624271755
    因子ts_rank(add(close_0, turn_0), constant(17))在训练集适应度值为-0.6766329763601696
    因子log(close_0)在训练集适应度值为-0.7388599896612504
    因子shift(return_0, 13)在训练集适应度值为-0.7262835580686147
    
    因子min(return_0, low_0)在测试集适应度值为2.1723126285272114
    
    pass:1, record:48, population: 1
    
    下一代挖掘的个体数:50
    
    -- 开始第「3」次循环第「2」代挖掘 --
    
    去重前的个体数50
    去重后的个体数19
    
    每代的平均适应度:[-0.15718277761270463, 0.19400110052137878]
    因子min(return_0, low_0)在训练集适应度值为2.966799078652266
    因子min(return_0, high_0)在训练集适应度值为2.966799078652266
    因子min(low_0, low_0)在训练集适应度值为-0.8461702830903864
    因子min(shift(sign(high_0), constant(15)), return_0)在训练集适应度值为-1.115962756053952
    因子min(turn_0, low_0)在训练集适应度值为-1.0206958199547311
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, ta_sma(add(low_0, close_0), constant(4)))在训练集适应度值为2.966799078652266
    因子min(std(turn_0, 16), low_0)在训练集适应度值为-0.9073958133141969
    因子ts_max(close_0, 11)在训练集适应度值为-4.434674352212621
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子mul(close_0, high_0)在训练集适应度值为-0.9559744753698158
    因子mul(high_0, turn_0)在训练集适应度值为-1.0079381449829803
    因子min(close_0, low_0)在训练集适应度值为-0.8461702830903864
    因子min(high_0, turn_0)在训练集适应度值为-1.0412213003259672
    因子div(ta_sma(close_0, 17), min(turn_0, close_0))在训练集适应度值为-2.419425246353318
    因子min(return_0, turn_0)在训练集适应度值为3.2711429509050887
    因子min(ts_min(ts_min(high_0, 1), constant(9)), low_0)在训练集适应度值为-1.5137317513185056
    因子min(return_0, add(correlation(close_0, turn_0, 8), ts_rank(close_0, 8)))在训练集适应度值为2.94848522670707
    
    因子min(return_0, low_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, high_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, ta_sma(add(low_0, close_0), constant(4)))在测试集适应度值为2.1723126285272114
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, turn_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, add(correlation(close_0, turn_0, 8), ts_rank(close_0, 8)))在测试集适应度值为2.172857538528948
    
    pass:8, record:19, population: 8
    
    下一代挖掘的个体数:50
    
    -- 开始第「3」次循环第「3」代挖掘 --
    
    去重前的个体数50
    去重后的个体数29
    
    每代的平均适应度:[-0.15718277761270463, 0.19400110052137878, 0.3235587031398346]
    因子min(close_0, return_0)在训练集适应度值为0.17082496878096806
    因子min(low_0, add(close_0, ts_rank(close_0, 8)))在训练集适应度值为-0.8496101811725715
    因子min(turn_0, return_0)在训练集适应度值为3.2711429509050887
    因子min(return_0, correlation(close_0, turn_0, 8))在训练集适应度值为2.9519967578356985
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(return_0, high_0)在训练集适应度值为2.966799078652266
    因子min(close_0, correlation(close_0, turn_0, 8))在训练集适应度值为-0.7956654797947154
    因子min(return_0, ta_sma(add(low_0, close_0), constant(4)))在训练集适应度值为2.966799078652266
    因子min(return_0, add(low_0, close_0))在训练集适应度值为2.966799078652266
    因子min(product(return_0, 5), close_0)在训练集适应度值为-0.0366315584030273
    因子min(low_0, add(correlation(close_0, turn_0, 8), ts_rank(close_0, 8)))在训练集适应度值为-0.759877602876318
    因子sum(close_0, 15)在训练集适应度值为-3.24810344904179
    因子min(return_0, low_0)在训练集适应度值为2.966799078652266
    因子min(log(low_0), high_0)在训练集适应度值为-0.847220597544614
    因子ts_rank(ts_min(close_0, 7), constant(19))在训练集适应度值为0.251413500376999
    因子min(ts_rank(close_0, 8), return_0)在训练集适应度值为-3.510771226320033
    因子min(return_0, add(correlation(close_0, turn_0, 8), return_0))在训练集适应度值为2.9649808618537046
    因子min(ts_argmax(turn_0, 17), sign(turn_0))在训练集适应度值为-1.8619090263657319
    因子add(div(close_0, turn_0), mul(low_0, low_0))在训练集适应度值为-0.9782696442850973
    因子min(close_0, close_0)在训练集适应度值为0.140686457362151
    因子min(return_0, add(return_0, ts_rank(close_0, 8)))在训练集适应度值为2.844081612663561
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子low_0在训练集适应度值为-0.8461702830903864
    因子min(return_0, add(turn_0, ts_rank(close_0, 8)))在训练集适应度值为2.8551649417356257
    因子min(return_0, add(correlation(close_0, turn_0, 8), ts_rank(close_0, 10)))在训练集适应度值为2.940714056110555
    因子min(sum(close_0, 3), close_0)在训练集适应度值为-0.6122625886604794
    因子min(return_0, add(correlation(close_0, turn_0, 18), ts_rank(close_0, 8)))在训练集适应度值为2.966799078652266
    因子min(low_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, sub(correlation(close_0, turn_0, 8), ts_rank(close_0, 8)))在训练集适应度值为2.95801578602637
    
    因子min(turn_0, return_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, correlation(close_0, turn_0, 8))在测试集适应度值为2.172857538528948
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, high_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, ta_sma(add(low_0, close_0), constant(4)))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(low_0, close_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, low_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, turn_0, 8), return_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(return_0, ts_rank(close_0, 8)))在测试集适应度值为2.044636043350991
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, add(turn_0, ts_rank(close_0, 8)))在测试集适应度值为2.2319814604395725
    因子min(return_0, add(correlation(close_0, turn_0, 8), ts_rank(close_0, 10)))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, turn_0, 18), ts_rank(close_0, 8)))在测试集适应度值为2.1723126285272114
    因子min(low_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, sub(correlation(close_0, turn_0, 8), ts_rank(close_0, 8)))在测试集适应度值为2.170581542633562
    
    pass:15, record:29, population: 15
    
    下一代挖掘的个体数:50
    
    -- 开始第「3」次循环第「4」代挖掘 --
    
    去重前的个体数50
    去重后的个体数33
    
    每代的平均适应度:[-0.15718277761270463, 0.19400110052137878, 0.3235587031398346, 0.5447230934101001]
    因子min(return_0, ts_rank(close_0, 8))在训练集适应度值为2.5840894992305894
    因子min(ts_argmax(close_0, 9), close_0)在训练集适应度值为-0.3393257344854195
    因子min(return_0, add(turn_0, close_0))在训练集适应度值为2.966799078652266
    因子min(return_0, high_0)在训练集适应度值为2.966799078652266
    因子min(return_0, turn_0)在训练集适应度值为3.2711429509050887
    因子min(low_0, return_0)在训练集适应度值为2.966799078652266
    因子min(low_0, correlation(close_0, turn_0, 8))在训练集适应度值为-0.759877602876318
    因子min(return_0, add(correlation(close_0, turn_0, 18), ts_rank(close_0, constant(constant(13)))))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(close_0, turn_0, 8))在训练集适应度值为2.9519967578356985
    因子min(return_0, max(correlation(close_0, return_0, 8), return_0))在训练集适应度值为2.966799078652266
    因子high_0在训练集适应度值为-0.899352179349475
    因子min(return_0, add(high_0, return_0))在训练集适应度值为2.966799078652266
    因子min(ts_rank(close_0, 8), high_0)在训练集适应度值为-3.820469502549138
    因子min(turn_0, return_0)在训练集适应度值为3.2711429509050887
    因子min(return_0, add(correlation(close_0, low_0, 8), ts_rank(correlation(ts_argmin(return_0, 19), ta_sma(low_0, 9), constant(8)), 10)))在训练集适应度值为2.966799078652266
    因子min(return_0, min(correlation(close_0, turn_0, 8), low_0))在训练集适应度值为2.9519967578356985
    因子min(close_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, log(turn_0))在训练集适应度值为2.0564543978466947
    因子min(return_0, add(turn_0, ts_rank(close_0, 8)))在训练集适应度值为2.8551649417356257
    因子min(return_0, add(correlation(close_0, turn_0, 18), ts_rank(close_0, 18)))在训练集适应度值为2.966799078652266
    因子min(return_0, add(correlation(close_0, turn_0, 8), ts_rank(close_0, 8)))在训练集适应度值为2.94848522670707
    因子min(return_0, correlation(return_0, turn_0, 8))在训练集适应度值为2.4060009257825916
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(close_0, low_0)在训练集适应度值为0.144803210441691
    因子min(return_0, add(turn_0, turn_0))在训练集适应度值为3.081364302089742
    因子min(return_0, add(correlation(close_0, ts_rank(close_0, 8), 9), high_0))在训练集适应度值为2.966799078652266
    因子min(return_0, add(correlation(close_0, turn_0, 14), ts_rank(close_0, 8)))在训练集适应度值为2.966799078652266
    因子min(return_0, add(correlation(close_0, turn_0, 8), ts_rank(close_0, 10)))在训练集适应度值为2.810692975213698
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, add(close_0, ts_rank(close_0, 8)))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(close_0, turn_0, constant(13)))在训练集适应度值为2.966799078652266
    因子min(return_0, log(covariance(close_0, close_0, 7)))在训练集适应度值为2.0520534728926103
    因子min(return_0, ts_rank(close_0, 8))在训练集适应度值为-1.3309010501314837
    
    因子min(return_0, ts_rank(close_0, 8))在测试集适应度值为2.057394946038863
    因子min(return_0, add(turn_0, close_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, high_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, turn_0)在测试集适应度值为1.9628287395834418
    因子min(low_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, turn_0, 18), ts_rank(close_0, constant(constant(13)))))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(close_0, turn_0, 8))在测试集适应度值为2.172857538528948
    因子min(return_0, max(correlation(close_0, return_0, 8), return_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(high_0, return_0))在测试集适应度值为2.1723126285272114
    因子min(turn_0, return_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, add(correlation(close_0, low_0, 8), ts_rank(correlation(ts_argmin(return_0, 19), ta_sma(low_0, 9), constant(8)), 10)))在测试集适应度值为2.1723126285272114
    因子min(return_0, min(correlation(close_0, turn_0, 8), low_0))在测试集适应度值为2.172857538528948
    因子min(close_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, log(turn_0))在测试集适应度值为0.9452525382748316
    因子min(return_0, add(turn_0, ts_rank(close_0, 8)))在测试集适应度值为2.2319814604395725
    因子min(return_0, add(correlation(close_0, turn_0, 18), ts_rank(close_0, 18)))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, turn_0, 8), ts_rank(close_0, 8)))在测试集适应度值为2.172857538528948
    因子min(return_0, correlation(return_0, turn_0, 8))在测试集适应度值为1.9272439505260477
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, add(turn_0, turn_0))在测试集适应度值为2.1480745878886385
    因子min(return_0, add(correlation(close_0, ts_rank(close_0, 8), 9), high_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, turn_0, 14), ts_rank(close_0, 8)))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, turn_0, 8), ts_rank(close_0, 10)))在测试集适应度值为2.1594610094274094
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, add(close_0, ts_rank(close_0, 8)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(close_0, turn_0, constant(13)))在测试集适应度值为2.1723126285272114
    因子min(return_0, log(covariance(close_0, close_0, 7)))在测试集适应度值为1.8303539639593456
    
    pass:27, record:33, population: 27
    
    下一代挖掘的个体数:50
    
    -- 开始第「3」次循环第「5」代挖掘 --
    
    去重前的个体数50
    去重后的个体数39
    
    每代的平均适应度:[-0.15718277761270463, 0.19400110052137878, 0.3235587031398346, 0.5447230934101001, 0.5272465559492385]
    因子min(close_0, max(correlation(close_0, return_0, 8), return_0))在训练集适应度值为2.960898005422229
    因子min(return_0, add(sum(log(close_0), constant(13)), ts_rank(correlation(ts_argmin(return_0, 19), ta_sma(low_0, 9), constant(8)), 10)))在训练集适应度值为2.966799078652266
    因子min(decay_linear(ts_max(turn_0, 3), constant(8)), add(turn_0, ts_rank(close_0, 8)))在训练集适应度值为-0.27740356177680137
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(close_0, turn_0, 13))在训练集适应度值为2.966799078652266
    因子min(return_0, low_0)在训练集适应度值为2.966799078652266
    因子min(return_0, add(close_0, close_0))在训练集适应度值为2.966799078652266
    因子min(low_0, div(return_0, close_0))在训练集适应度值为-0.4680979790560583
    因子min(return_0, add(correlation(close_0, low_0, 8), ts_rank(correlation(return_0, ta_sma(low_0, 9), constant(8)), 10)))在训练集适应度值为2.966799078652266
    因子min(return_0, add(correlation(close_0, turn_0, 10), ts_rank(close_0, 10)))在训练集适应度值为2.8959114056419373
    因子min(return_0, turn_0)在训练集适应度值为3.2711429509050887
    因子min(turn_0, sign(return_0))在训练集适应度值为-2.435104638769661
    因子min(return_0, shift(min(close_0, close_0), constant(5)))在训练集适应度值为2.966799078652266
    因子min(return_0, add(high_0, return_0))在训练集适应度值为2.966799078652266
    因子min(return_0, max(correlation(close_0, return_0, constant(13)), return_0))在训练集适应度值为2.966799078652266
    因子min(return_0, add(correlation(std(turn_0, 5), ts_rank(close_0, 8), 9), close_0))在训练集适应度值为2.966799078652266
    因子min(return_0, add(correlation(high_0, low_0, 8), ts_rank(correlation(ts_argmin(return_0, 19), ts_rank(log(close_0), constant(17)), constant(8)), 10)))在训练集适应度值为2.9520717461656645
    因子min(return_0, add(correlation(close_0, turn_0, 6), ts_rank(ts_rank(close_0, 8), 8)))在训练集适应度值为2.9424745245985306
    因子min(return_0, add(correlation(close_0, turn_0, 8), close_0))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(close_0, turn_0, constant(13)))在训练集适应度值为2.966799078652266
    因子ts_argmax(high_0, 4)在训练集适应度值为-2.8635977752070687
    因子min(return_0, add(correlation(close_0, close_0, constant(constant(18))), close_0))在训练集适应度值为2.966799078652266
    因子min(low_0, high_0)在训练集适应度值为-0.8461702830903864
    因子min(return_0, correlation(close_0, low_0, 8))在训练集适应度值为2.954534975232355
    因子min(return_0, add(turn_0, ts_rank(close_0, 13)))在训练集适应度值为2.978874739426301
    因子min(return_0, ts_min(add(close_0, low_0), 14))在训练集适应度值为2.966799078652266
    因子min(return_0, max(close_0, ts_min(low_0, 10)))在训练集适应度值为2.966799078652266
    因子ts_rank(low_0, 17)在训练集适应度值为-0.3115016234437932
    因子min(high_0, add(turn_0, close_0))在训练集适应度值为-0.8278705199240984
    因子min(return_0, add(close_0, turn_0))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(close_0, turn_0, 8))在训练集适应度值为2.9519967578356985
    因子min(close_0, add(turn_0, ts_rank(close_0, 8)))在训练集适应度值为-0.8369725612320132
    因子min(return_0, correlation(ts_min(return_0, 9), abs(low_0), constant(4)))在训练集适应度值为3.0084688892574323
    因子min(add(turn_0, ts_rank(close_0, 8)), return_0)在训练集适应度值为-3.4856288130150888
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(return_0, sub(correlation(close_0, turn_0, 8), close_0))在训练集适应度值为2.934338459232893
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(low_0, covariance(close_0, turn_0, 5))在训练集适应度值为-0.08788094904206695
    因子min(return_0, add(correlation(close_0, turn_0, 18), close_0))在训练集适应度值为2.966799078652266
    
    因子min(close_0, max(correlation(close_0, return_0, 8), return_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(sum(log(close_0), constant(13)), ts_rank(correlation(ts_argmin(return_0, 19), ta_sma(low_0, 9), constant(8)), 10)))在测试集适应度值为2.1723126285272114
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(close_0, turn_0, 13))在测试集适应度值为2.1723126285272114
    因子min(return_0, low_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, add(close_0, close_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, low_0, 8), ts_rank(correlation(return_0, ta_sma(low_0, 9), constant(8)), 10)))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, turn_0, 10), ts_rank(close_0, 10)))在测试集适应度值为2.135890427432
    因子min(return_0, turn_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, shift(min(close_0, close_0), constant(5)))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(high_0, return_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, max(correlation(close_0, return_0, constant(13)), return_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(std(turn_0, 5), ts_rank(close_0, 8), 9), close_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(high_0, low_0, 8), ts_rank(correlation(ts_argmin(return_0, 19), ts_rank(log(close_0), constant(17)), constant(8)), 10)))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, turn_0, 6), ts_rank(ts_rank(close_0, 8), 8)))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, turn_0, 8), close_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(close_0, turn_0, constant(13)))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, close_0, constant(constant(18))), close_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(close_0, low_0, 8))在测试集适应度值为2.170581542633562
    因子min(return_0, add(turn_0, ts_rank(close_0, 13)))在测试集适应度值为2.2144794024239918
    因子min(return_0, ts_min(add(close_0, low_0), 14))在测试集适应度值为2.1723126285272114
    因子min(return_0, max(close_0, ts_min(low_0, 10)))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(close_0, turn_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(close_0, turn_0, 8))在测试集适应度值为2.172857538528948
    因子min(return_0, correlation(ts_min(return_0, 9), abs(low_0), constant(4)))在测试集适应度值为2.210458418652508
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, sub(correlation(close_0, turn_0, 8), close_0))在测试集适应度值为2.172857538528948
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, add(correlation(close_0, turn_0, 18), close_0))在测试集适应度值为2.1723126285272114
    
    pass:29, record:39, population: 29
    
    下一代挖掘的个体数:50
    
    -- 开始第「4」次循环第「1」代挖掘 --
    
    去重前的个体数50
    去重后的个体数50
    
    每代的平均适应度:[-0.13359826356502566]
    因子abs(low_0)在训练集适应度值为-0.8461702830903864
    因子std(low_0, 12)在训练集适应度值为-3.594164414955865
    因子ts_argmax(close_0, 19)在训练集适应度值为-0.2652075414845032
    因子ts_max(turn_0, 19)在训练集适应度值为-1.3858233058894833
    因子add(sub(low_0, low_0), product(high_0, 17))在训练集适应度值为nan
    因子ts_max(return_0, 8)在训练集适应度值为-1.2069292222681953
    因子ts_argmin(normalize(high_0), constant(12))在训练集适应度值为-2.7601629077970364
    因子correlation(mul(turn_0, close_0), ts_rank(close_0, 13), constant(6))在训练集适应度值为-5.170582799031485
    因子ts_min(turn_0, 4)在训练集适应度值为-2.384600016408193
    因子delta(return_0, 7)在训练集适应度值为-3.9773448895268007
    因子normalize(add(low_0, close_0))在训练集适应度值为-0.8772729954380408
    因子div(turn_0, return_0)在训练集适应度值为-1.239954345350399
    因子std(ta_sma(close_0, 6), constant(14))在训练集适应度值为-2.025874834252821
    因子std(turn_0, 5)在训练集适应度值为-2.80957391780679
    因子abs(close_0)在训练集适应度值为-0.8476981027065214
    因子ta_sma(log(close_0), constant(4))在训练集适应度值为-2.536851472674113
    因子add(div(close_0, return_0), abs(turn_0))在训练集适应度值为-0.855853506674452
    因子product(rank(close_0), constant(18))在训练集适应度值为nan
    因子mul(turn_0, close_0)在训练集适应度值为-1.0700548550648357
    因子log(high_0)在训练集适应度值为-0.6118414256911656
    因子std(close_0, 17)在训练集适应度值为0.11055936236388753
    因子ts_max(close_0, constant(17))在训练集适应度值为-1.6057843449891747
    因子delta(turn_0, 19)在训练集适应度值为-1.7842914138017967
    因子ts_argmin(low_0, 11)在训练集适应度值为-2.501662954021381
    因子ts_argmax(ts_rank(high_0, 1), constant(8))在训练集适应度值为-1.1844539783881658
    因子correlation(add(return_0, close_0), ts_argmin(close_0, 14), constant(12))在训练集适应度值为nan
    因子log(return_0)在训练集适应度值为2.9263085908876127
    因子shift(low_0, 5)在训练集适应度值为-0.21567138532920396
    因子correlation(turn_0, high_0, 17)在训练集适应度值为-2.0404863523884846
    因子ta_sma(return_0, 12)在训练集适应度值为-3.0684400769021303
    因子log(ts_rank(close_0, 17))在训练集适应度值为nan
    因子ts_rank(low_0, 3)在训练集适应度值为-1.9465236894928155
    因子sign(covariance(low_0, close_0, 12))在训练集适应度值为0.0341069515139254
    因子sign(turn_0)在训练集适应度值为nan
    因子min(return_0, shift(close_0, 19))在训练集适应度值为2.966799078652266
    因子decay_linear(close_0, constant(12))在训练集适应度值为-3.189156633296345
    因子add(abs(close_0), ta_sma(close_0, 14))在训练集适应度值为-0.46090771018698373
    因子decay_linear(high_0, constant(15))在训练集适应度值为-3.760176812145961
    因子mul(close_0, close_0)在训练集适应度值为-0.82655527898439
    因子normalize(turn_0)在训练集适应度值为-1.0095106446031976
    因子mul(ta_sma(low_0, 12), ts_argmin(high_0, 12))在训练集适应度值为-4.239030734711274
    因子covariance(return_0, return_0, 4)在训练集适应度值为-1.009287713018236
    因子ts_max(div(low_0, close_0), constant(5))在训练集适应度值为-2.3957372298913606
    因子sub(std(high_0, 14), ts_rank(turn_0, 11))在训练集适应度值为-1.1357748756675081
    因子div(abs(high_0), sub(close_0, close_0))在训练集适应度值为nan
    因子ts_rank(close_0, 2)在训练集适应度值为-2.183648180958447
    因子sum(return_0, 1)在训练集适应度值为2.966799078652266
    因子shift(return_0, 2)在训练集适应度值为-0.6448278650041174
    因子normalize(ts_rank(close_0, 19))在训练集适应度值为-1.153634345029874
    因子abs(turn_0)在训练集适应度值为-1.0095106446031976
    
    因子log(return_0)在测试集适应度值为2.2029442082923274
    因子min(return_0, shift(close_0, 19))在测试集适应度值为2.1723126285272114
    因子sum(return_0, 1)在测试集适应度值为2.1723126285272114
    
    pass:3, record:50, population: 3
    
    下一代挖掘的个体数:50
    
    -- 开始第「4」次循环第「2」代挖掘 --
    
    去重前的个体数50
    去重后的个体数20
    
    每代的平均适应度:[-0.13359826356502566, 0.06778499964455141]
    因子log(return_0)在训练集适应度值为2.9263085908876127
    因子log(close_0)在训练集适应度值为-0.7388599896612504
    因子log(high_0)在训练集适应度值为-0.6118414256911656
    因子log(turn_0)在训练集适应度值为-1.4561224619584097
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子log(low_0)在训练集适应度值为-0.847220597544614
    因子sum(return_0, constant(constant(12)))在训练集适应度值为-3.2741804638469403
    因子ts_argmax(abs(high_0), constant(16))在训练集适应度值为-1.051450697806151
    因子sum(return_0, 1)在训练集适应度值为2.966799078652266
    因子sum(low_0, 1)在训练集适应度值为-0.8461702830903864
    因子log(sum(low_0, 16))在训练集适应度值为-2.0838591594685103
    因子sum(ta_sma(high_0, 4), 1)在训练集适应度值为-2.160326741306502
    因子log(close_0)在训练集适应度值为0.365794883218713
    因子sum(turn_0, 1)在训练集适应度值为-1.0095106446031976
    因子sum(close_0, 1)在训练集适应度值为0.14035111021092236
    因子sum(return_0, 16)在训练集适应度值为-1.3132802014353375
    因子log(min(turn_0, return_0))在训练集适应度值为3.2631937646060774
    因子add(min(high_0, low_0), max(return_0, high_0))在训练集适应度值为-0.9330158117378282
    因子sum(std(close_0, 19), constant(17))在训练集适应度值为-0.09378399096673105
    因子min(return_0, shift(close_0, 19))在训练集适应度值为2.966799078652266
    
    因子log(return_0)在测试集适应度值为2.2029442082923274
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子sum(return_0, 1)在测试集适应度值为2.1723126285272114
    因子log(min(turn_0, return_0))在测试集适应度值为1.9884439676607377
    因子min(return_0, shift(close_0, 19))在测试集适应度值为2.1723126285272114
    
    pass:5, record:20, population: 5
    
    下一代挖掘的个体数:50
    
    -- 开始第「4」次循环第「3」代挖掘 --
    
    去重前的个体数50
    去重后的个体数22
    
    每代的平均适应度:[-0.13359826356502566, 0.06778499964455141, 0.15852469186738494]
    因子sum(return_0, 1)在训练集适应度值为2.966799078652266
    因子log(close_0)在训练集适应度值为0.365794883218713
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子log(return_0)在训练集适应度值为2.9263085908876127
    因子min(return_0, shift(high_0, 19))在训练集适应度值为2.966799078652266
    因子min(high_0, close_0)在训练集适应度值为-0.8734474736300971
    因子close_0在训练集适应度值为0.14035111021092236
    因子log(low_0)在训练集适应度值为-0.847220597544614
    因子log(high_0)在训练集适应度值为-0.6118414256911656
    因子min(return_0, mul(ts_argmax(turn_0, 5), delta(low_0, 16)))在训练集适应度值为2.9077846682609634
    因子mul(log(return_0), covariance(close_0, high_0, 6))在训练集适应度值为-4.096421419772917
    因子log(turn_0)在训练集适应度值为-1.4561224619584097
    因子min(div(turn_0, close_0), shift(close_0, 19))在训练集适应度值为-0.05949675617599686
    因子log(mul(low_0, close_0))在训练集适应度值为-0.8138468433137203
    因子log(shift(close_0, 19))在训练集适应度值为0.16362307775273208
    因子min(low_0, return_0)在训练集适应度值为2.966799078652266
    因子sum(close_0, 1)在训练集适应度值为-0.8476981027065214
    因子log(close_0)在训练集适应度值为-0.7388599896612504
    因子sum(low_0, 1)在训练集适应度值为-0.8461702830903864
    因子min(turn_0, return_0)在训练集适应度值为3.2711429509050887
    因子min(turn_0, close_0)在训练集适应度值为-1.0143454887402648
    
    因子sum(return_0, 1)在测试集适应度值为2.1723126285272114
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子log(return_0)在测试集适应度值为2.2029442082923274
    因子min(return_0, shift(high_0, 19))在测试集适应度值为2.1723126285272114
    因子min(return_0, mul(ts_argmax(turn_0, 5), delta(low_0, 16)))在测试集适应度值为2.1526844941257908
    因子min(low_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(turn_0, return_0)在测试集适应度值为1.9628287395834418
    
    pass:8, record:22, population: 8
    
    下一代挖掘的个体数:50
    
    -- 开始第「4」次循环第「4」代挖掘 --
    
    去重前的个体数50
    去重后的个体数28
    
    每代的平均适应度:[-0.13359826356502566, 0.06778499964455141, 0.15852469186738494, 0.24422809308826285]
    因子return_0在训练集适应度值为2.966799078652266
    因子min(close_0, low_0)在训练集适应度值为0.144803210441691
    因子min(return_0, mul(turn_0, ts_max(close_0, 16)))在训练集适应度值为2.954652813794514
    因子sum(return_0, constant(constant(3)))在训练集适应度值为-2.9926885420109017
    因子min(return_0, shift(high_0, constant(18)))在训练集适应度值为2.966799078652266
    因子sum(return_0, 1)在训练集适应度值为2.966799078652266
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子sum(close_0, 1)在训练集适应度值为-0.8476981027065214
    因子log(normalize(high_0))在训练集适应度值为-0.7072671046802772
    因子log(close_0)在训练集适应度值为0.365794883218713
    因子log(return_0)在训练集适应度值为2.9263085908876127
    因子log(low_0)在训练集适应度值为-0.847220597544614
    因子min(return_0, high_0)在训练集适应度值为2.966799078652266
    因子ts_min(return_0, 14)在训练集适应度值为-3.0099862589443562
    因子min(high_0, return_0)在训练集适应度值为2.966799078652266
    因子log(shift(high_0, 19))在训练集适应度值为-1.4180014382133372
    因子min(turn_0, return_0)在训练集适应度值为3.2711429509050887
    因子min(product(turn_0, 3), delta(low_0, 18))在训练集适应度值为-3.733755816731241
    因子min(return_0, shift(return_0, 19))在训练集适应度值为2.897081039087316
    因子min(return_0, low_0)在训练集适应度值为2.966799078652266
    因子min(return_0, ts_rank(low_0, constant(2)))在训练集适应度值为-2.2772383278766926
    因子min(close_0, return_0)在训练集适应度值为0.17082496878096806
    因子sub(decay_linear(close_0, 13), covariance(low_0, low_0, 11))在训练集适应度值为-4.476916275872022
    因子log(turn_0)在训练集适应度值为-1.4561224619584097
    因子log(shift(high_0, 2))在训练集适应度值为-1.6019417994172531
    因子min(return_0, abs(ta_sma(turn_0, 11)))在训练集适应度值为2.983813429250927
    因子turn_0在训练集适应度值为-1.0095106446031976
    因子high_0在训练集适应度值为-0.899352179349475
    
    因子return_0在测试集适应度值为2.1723126285272114
    因子min(return_0, mul(turn_0, ts_max(close_0, 16)))在测试集适应度值为2.1723126285272114
    因子min(return_0, shift(high_0, constant(18)))在测试集适应度值为2.1723126285272114
    因子sum(return_0, 1)在测试集适应度值为2.1723126285272114
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子log(return_0)在测试集适应度值为2.2029442082923274
    因子min(return_0, high_0)在测试集适应度值为2.1723126285272114
    因子min(high_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(turn_0, return_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, shift(return_0, 19))在测试集适应度值为2.2645145481452214
    因子min(return_0, low_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, abs(ta_sma(turn_0, 11)))在测试集适应度值为2.170771875137197
    
    pass:12, record:28, population: 12
    
    下一代挖掘的个体数:50
    
    -- 开始第「4」次循环第「5」代挖掘 --
    
    去重前的个体数50
    去重后的个体数30
    
    每代的平均适应度:[-0.13359826356502566, 0.06778499964455141, 0.15852469186738494, 0.24422809308826285, 0.3184399019388734]
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(return_0, low_0)在训练集适应度值为2.966799078652266
    因子log(low_0)在训练集适应度值为-0.847220597544614
    因子min(ts_min(return_0, 13), shift(return_0, 19))在训练集适应度值为-3.2904404262094857
    因子sum(return_0, 1)在训练集适应度值为2.966799078652266
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子log(return_0)在训练集适应度值为2.9263085908876127
    因子min(return_0, shift(return_0, 19))在训练集适应度值为2.897081039087316
    因子delta(close_0, 2)在训练集适应度值为3.476861165293347
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(return_0, high_0)在训练集适应度值为2.966799078652266
    因子min(return_0, mul(turn_0, close_0))在训练集适应度值为2.982629953332209
    因子abs(close_0)在训练集适应度值为-0.8476981027065214
    因子min(close_0, return_0)在训练集适应度值为2.966799078652266
    因子sum(return_0, 19)在训练集适应度值为-2.4603579690902704
    因子min(return_0, shift(high_0, constant(18)))在训练集适应度值为2.966799078652266
    因子sum(low_0, constant(14))在训练集适应度值为-2.67937569173984
    因子log(shift(return_0, 19))在训练集适应度值为-1.3471365258232537
    因子sum(close_0, 1)在训练集适应度值为0.14035111021092236
    因子min(product(covariance(close_0, low_0, 12), constant(18)), return_0)在训练集适应度值为nan
    因子min(covariance(sign(high_0), product(return_0, 10), constant(16)), return_0)在训练集适应度值为nan
    因子log(turn_0)在训练集适应度值为-1.4561224619584097
    因子ta_sma(ts_max(close_0, 1), constant(18))在训练集适应度值为-1.9571873566030458
    因子min(turn_0, low_0)在训练集适应度值为-1.0206958199547311
    因子min(return_0, mul(turn_0, max(ts_max(turn_0, 12), ts_rank(high_0, 5))))在训练集适应度值为0.4887626870423723
    因子min(return_0, shift(return_0, 16))在训练集适应度值为2.688490568561795
    因子min(return_0, shift(ts_min(low_0, 8), 19))在训练集适应度值为2.966799078652266
    因子log(high_0)在训练集适应度值为-0.6118414256911656
    因子min(turn_0, mul(turn_0, ts_max(close_0, 16)))在训练集适应度值为-1.0095106446031976
    因子max(ts_rank(return_0, 2), correlation(close_0, turn_0, 19))在训练集适应度值为-1.561184153531764
    
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, low_0)在测试集适应度值为2.1723126285272114
    因子sum(return_0, 1)在测试集适应度值为2.1723126285272114
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子log(return_0)在测试集适应度值为2.2029442082923274
    因子min(return_0, shift(return_0, 19))在测试集适应度值为2.2645145481452214
    因子delta(close_0, 2)在测试集适应度值为1.6909389903239054
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, high_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, mul(turn_0, close_0))在测试集适应度值为2.1723126285272114
    因子min(close_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, shift(high_0, constant(18)))在测试集适应度值为2.1723126285272114
    因子min(return_0, shift(return_0, 16))在测试集适应度值为2.095321815696886
    因子min(return_0, shift(ts_min(low_0, 8), 19))在测试集适应度值为2.1723126285272114
    
    pass:14, record:30, population: 14
    
    下一代挖掘的个体数:50
    
    -- 开始第「5」次循环第「1」代挖掘 --
    
    去重前的个体数50
    去重后的个体数49
    
    每代的平均适应度:[-0.04861216167402308]
    因子std(low_0, 6)在训练集适应度值为-1.6593528273098832
    因子shift(turn_0, 10)在训练集适应度值为-0.6238947936698077
    因子decay_linear(low_0, 9)在训练集适应度值为-2.060339093881102
    因子ts_argmin(close_0, 14)在训练集适应度值为0.27953442119981947
    因子ts_argmax(ts_max(return_0, 16), constant(16))在训练集适应度值为-1.327094127554072
    因子ts_min(close_0, 11)在训练集适应度值为-4.740895749146302
    因子rank(sign(return_0))在训练集适应度值为nan
    因子sign(sub(turn_0, close_0))在训练集适应度值为0.08375547129936799
    因子sum(covariance(return_0, high_0, 1), constant(5))在训练集适应度值为nan
    因子sign(close_0)在训练集适应度值为nan
    因子delta(sign(return_0), constant(6))在训练集适应度值为nan
    因子covariance(close_0, high_0, 16)在训练集适应度值为-1.5788937263379081
    因子min(max(turn_0, low_0), ts_rank(close_0, 8))在训练集适应度值为-1.360191585690583
    因子sum(low_0, 18)在训练集适应度值为-1.7028640895557463
    因子div(high_0, low_0)在训练集适应度值为2.765437476966865
    因子delta(close_0, 12)在训练集适应度值为1.2048322011331953
    因子mul(turn_0, low_0)在训练集适应度值为-1.0181403043791781
    因子sum(close_0, 3)在训练集适应度值为-1.463251480706445
    因子add(high_0, shift(low_0, 6))在训练集适应度值为-3.858334143122769
    因子sub(ts_argmin(high_0, 14), covariance(return_0, high_0, 3))在训练集适应度值为-2.020983274712671
    因子sub(ts_argmax(close_0, 6), return_0)在训练集适应度值为-0.9887524336396489
    因子correlation(decay_linear(turn_0, 17), ts_min(high_0, 3), constant(17))在训练集适应度值为nan
    因子min(low_0, low_0)在训练集适应度值为-0.8461702830903864
    因子ts_rank(min(close_0, turn_0), constant(16))在训练集适应度值为2.4326314192139944
    因子product(shift(close_0, 1), constant(8))在训练集适应度值为0.2568256482297317
    因子product(ta_sma(low_0, 17), constant(10))在训练集适应度值为-0.39185706366426365
    因子abs(low_0)在训练集适应度值为-0.8461702830903864
    因子sub(close_0, close_0)在训练集适应度值为0.24196857645824432
    因子correlation(rank(return_0), ts_max(high_0, 16), constant(7))在训练集适应度值为nan
    因子delta(log(return_0), constant(19))在训练集适应度值为-3.0457343398943384
    因子std(turn_0, 2)在训练集适应度值为-0.013376060034441988
    因子delta(turn_0, 17)在训练集适应度值为-3.143530401988067
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子min(correlation(close_0, high_0, 4), add(close_0, return_0))在训练集适应度值为-0.5893892057810065
    因子shift(low_0, 13)在训练集适应度值为-0.8903800058377234
    因子abs(log(close_0))在训练集适应度值为-0.7388599896612504
    因子log(high_0)在训练集适应度值为-0.6118414256911656
    因子ts_min(normalize(return_0), constant(5))在训练集适应度值为-0.7874950744181626
    因子ts_argmin(return_0, 17)在训练集适应度值为-1.1256389743547008
    因子correlation(turn_0, return_0, 4)在训练集适应度值为-0.6692376154284261
    因子delta(close_0, 13)在训练集适应度值为-2.5780058773486108
    因子log(turn_0)在训练集适应度值为-1.4561224619584097
    因子rank(close_0)在训练集适应度值为-1.0977782305532073
    因子normalize(rank(turn_0))在训练集适应度值为-0.7849678654703479
    因子product(log(return_0), constant(9))在训练集适应度值为nan
    因子ta_sma(high_0, 7)在训练集适应度值为-1.7072431804175154
    因子shift(close_0, 1)在训练集适应度值为-1.3638672369982188
    因子ts_argmin(low_0, 12)在训练集适应度值为-3.1921573630370887
    因子delta(turn_0, 10)在训练集适应度值为-1.5180477985489909
    
    因子div(high_0, low_0)在测试集适应度值为1.1568439185348383
    因子ts_rank(min(close_0, turn_0), constant(16))在测试集适应度值为1.423178740836047
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    
    pass:3, record:49, population: 3
    
    下一代挖掘的个体数:50
    
    -- 开始第「5」次循环第「2」代挖掘 --
    
    去重前的个体数50
    去重后的个体数27
    
    每代的平均适应度:[-0.04861216167402308, 0.333500623554049]
    因子ts_rank(min(close_0, return_0), constant(16))在训练集适应度值为2.458861785286965
    因子min(return_0, turn_0)在训练集适应度值为3.2711429509050887
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子min(ta_sma(ts_min(turn_0, 10), constant(3)), return_0)在训练集适应度值为-2.233066386974195
    因子min(high_0, return_0)在训练集适应度值为2.966799078652266
    因子ts_rank(close_0, constant(16))在训练集适应度值为2.590562983329258
    因子ts_rank(add(close_0, turn_0), constant(16))在训练集适应度值为0.597498375814866
    因子ts_rank(min(close_0, turn_0), 16)在训练集适应度值为2.4326314192139944
    因子ts_rank(min(close_0, return_0), constant(6))在训练集适应度值为2.3081837394100355
    因子min(return_0, low_0)在训练集适应度值为2.966799078652266
    因子ts_max(add(close_0, high_0), 10)在训练集适应度值为-4.9708964256485775
    因子delta(decay_linear(return_0, 15), constant(1))在训练集适应度值为-2.7270082358957333
    因子ts_rank(min(return_0, turn_0), 16)在训练集适应度值为-0.5367074360266523
    因子ts_rank(min(ts_min(close_0, 9), turn_0), constant(16))在训练集适应度值为-3.1731240002097127
    因子min(ts_min(max(close_0, high_0), constant(3)), high_0)在训练集适应度值为-0.6827409582151237
    因子min(close_0, return_0)在训练集适应度值为2.966799078652266
    因子min(turn_0, return_0)在训练集适应度值为3.2711429509050887
    因子ts_rank(add(close_0, turn_0), 16)在训练集适应度值为0.597498375814866
    因子ts_rank(min(low_0, turn_0), constant(16))在训练集适应度值为-0.5474348626899693
    因子div(high_0, log(low_0))在训练集适应度值为-0.8886694010350215
    因子ts_rank(abs(close_0), constant(16))在训练集适应度值为2.590562983329258
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, turn_0), constant(15)))在训练集适应度值为2.959473945706857
    因子ts_rank(min(close_0, return_0), constant(5))在训练集适应度值为2.1380561667908267
    因子min(low_0, return_0)在训练集适应度值为2.966799078652266
    因子div(high_0, return_0)在训练集适应度值为-0.8780738497862343
    因子ts_rank(min(return_0, turn_0), constant(16))在训练集适应度值为-0.5367074360266523
    
    因子ts_rank(min(close_0, return_0), constant(16))在测试集适应度值为1.4241556516140776
    因子min(return_0, turn_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(high_0, return_0)在测试集适应度值为2.1723126285272114
    因子ts_rank(close_0, constant(16))在测试集适应度值为1.3417793970259018
    因子ts_rank(min(close_0, turn_0), 16)在测试集适应度值为1.423178740836047
    因子ts_rank(min(close_0, return_0), constant(6))在测试集适应度值为1.2417506663072688
    因子min(return_0, low_0)在测试集适应度值为2.1723126285272114
    因子min(close_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(turn_0, return_0)在测试集适应度值为1.9628287395834418
    因子ts_rank(abs(close_0), constant(16))在测试集适应度值为1.3417793970259018
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, turn_0), constant(15)))在测试集适应度值为2.176481242699318
    因子ts_rank(min(close_0, return_0), constant(5))在测试集适应度值为1.2222315224838403
    因子min(low_0, return_0)在测试集适应度值为2.1723126285272114
    
    pass:15, record:27, population: 15
    
    下一代挖掘的个体数:50
    
    -- 开始第「5」次循环第「3」代挖掘 --
    
    去重前的个体数50
    去重后的个体数29
    
    每代的平均适应度:[-0.04861216167402308, 0.333500623554049, 0.5114537101273361]
    因子min(low_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, low_0)在训练集适应度值为2.966799078652266
    因子min(return_0, add(close_0, close_0))在训练集适应度值为2.966799078652266
    因子min(turn_0, return_0)在训练集适应度值为3.2711429509050887
    因子min(return_0, correlation(correlation(low_0, turn_0, 4), add(close_0, turn_0), constant(15)))在训练集适应度值为2.959473945706857
    因子min(log(sub(low_0, close_0)), return_0)在训练集适应度值为nan
    因子min(close_0, return_0)在训练集适应度值为0.17082496878096806
    因子min(high_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子ts_rank(close_0, constant(16))在训练集适应度值为2.590562983329258
    因子ts_rank(min(product(return_0, 14), return_0), constant(16))在训练集适应度值为nan
    因子min(return_0, correlation(correlation(return_0, close_0, 4), add(close_0, turn_0), constant(15)))在训练集适应度值为2.977468978476626
    因子abs(max(return_0, low_0))在训练集适应度值为-0.8461702830903864
    因子min(high_0, delta(close_0, constant(9)))在训练集适应度值为-1.5007396882198472
    因子min(low_0, low_0)在训练集适应度值为-0.8461702830903864
    因子min(close_0, return_0)在训练集适应度值为2.966799078652266
    因子shift(normalize(high_0), constant(7))在训练集适应度值为-0.15250794716652577
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, high_0, 4), add(close_0, turn_0), constant(15)))在训练集适应度值为2.9626727168568703
    因子min(close_0, div(product(low_0, 5), std(return_0, 17)))在训练集适应度值为-0.8476981027065214
    因子min(return_0, correlation(correlation(return_0, turn_0, constant(1)), add(close_0, turn_0), constant(15)))在训练集适应度值为2.966799078652266
    因子ts_rank(min(low_0, turn_0), 16)在训练集适应度值为-0.5474348626899693
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子ts_rank(min(close_0, low_0), 16)在训练集适应度值为2.5924668483215254
    因子min(return_0, high_0)在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, turn_0), constant(constant(15))))在训练集适应度值为2.959473945706857
    因子min(return_0, correlation(correlation(div(return_0, close_0), turn_0, 4), add(close_0, turn_0), 15))在训练集适应度值为2.962882431289037
    因子min(return_0, turn_0)在训练集适应度值为3.2711429509050887
    因子min(return_0, min(add(close_0, high_0), min(return_0, close_0)))在训练集适应度值为2.966799078652266
    
    因子min(low_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, low_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, add(close_0, close_0))在测试集适应度值为2.1723126285272114
    因子min(turn_0, return_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, correlation(correlation(low_0, turn_0, 4), add(close_0, turn_0), constant(15)))在测试集适应度值为2.176481242699318
    因子min(high_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子ts_rank(close_0, constant(16))在测试集适应度值为1.3417793970259018
    因子min(return_0, correlation(correlation(return_0, close_0, 4), add(close_0, turn_0), constant(15)))在测试集适应度值为2.176481242699318
    因子min(close_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, high_0, 4), add(close_0, turn_0), constant(15)))在测试集适应度值为2.176481242699318
    因子min(return_0, correlation(correlation(return_0, turn_0, constant(1)), add(close_0, turn_0), constant(15)))在测试集适应度值为2.1723126285272114
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子ts_rank(min(close_0, low_0), 16)在测试集适应度值为1.3429207104210883
    因子min(return_0, high_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, turn_0), constant(constant(15))))在测试集适应度值为2.176481242699318
    因子min(return_0, correlation(correlation(div(return_0, close_0), turn_0, 4), add(close_0, turn_0), 15))在测试集适应度值为2.1723126285272114
    因子min(return_0, turn_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, min(add(close_0, high_0), min(return_0, close_0)))在测试集适应度值为2.1723126285272114
    
    pass:20, record:29, population: 20
    
    下一代挖掘的个体数:50
    
    -- 开始第「5」次循环第「4」代挖掘 --
    
    去重前的个体数50
    去重后的个体数36
    
    每代的平均适应度:[-0.04861216167402308, 0.333500623554049, 0.5114537101273361, 0.4419329939210573]
    因子min(turn_0, low_0)在训练集适应度值为-1.0206958199547311
    因子min(return_0, correlation(turn_0, add(close_0, return_0), constant(16)))在训练集适应度值为2.957688451813969
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(return_0, max(sum(low_0, 13), ts_argmax(return_0, 6)))在训练集适应度值为2.6720913468154714
    因子min(return_0, add(close_0, high_0))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, close_0, 4), add(log(ts_argmin(close_0, 4)), turn_0), constant(15)))在训练集适应度值为2.9776681970939074
    因子min(return_0, correlation(correlation(return_0, sum(low_0, 15), 4), low_0, constant(constant(15))))在训练集适应度值为2.966799078652266
    因子min(return_0, add(close_0, turn_0))在训练集适应度值为2.966799078652266
    因子min(turn_0, return_0)在训练集适应度值为3.2711429509050887
    因子min(return_0, correlation(low_0, turn_0, 4))在训练集适应度值为1.212362499333556
    因子min(turn_0, close_0)在训练集适应度值为-1.043982278327278
    因子min(return_0, correlation(correlation(low_0, min(close_0, low_0), 4), add(close_0, turn_0), constant(15)))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, close_0, 4), turn_0, constant(constant(7))))在训练集适应度值为2.852982475879074
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, turn_0), constant(15)))在训练集适应度值为2.959473945706857
    因子min(abs(close_0), correlation(correlation(return_0, high_0, 4), add(close_0, turn_0), constant(15)))在训练集适应度值为-0.8636302607355644
    因子min(return_0, correlation(correlation(return_0, high_0, 4), add(turn_0, turn_0), constant(15)))在训练集适应度值为2.964789489779659
    因子min(product(close_0, 14), correlation(correlation(low_0, turn_0, 4), add(close_0, close_0), constant(15)))在训练集适应度值为nan
    因子min(low_0, correlation(ts_min(close_0, 15), add(close_0, turn_0), constant(15)))在训练集适应度值为-0.8461702830903864
    因子min(return_0, correlation(high_0, add(close_0, turn_0), constant(4)))在训练集适应度值为2.33476374410298
    因子min(close_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, turn_0, constant(1)), add(close_0, turn_0), 15))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(low_0, close_0, 4), add(close_0, close_0), constant(15)))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(low_0, turn_0, 4), turn_0, constant(15)))在训练集适应度值为2.972948763921149
    因子min(close_0, close_0)在训练集适应度值为-0.8769926368339077
    因子div(close_0, high_0)在训练集适应度值为-1.5628533128038389
    因子min(return_0, high_0)在训练集适应度值为2.966799078652266
    因子min(return_0, min(add(close_0, high_0), min(return_0, close_0)))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, return_0, 4), return_0, constant(constant(15))))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(turn_0, close_0, 4), add(close_0, return_0), constant(15)))在训练集适应度值为2.9760509407712474
    因子min(low_0, return_0)在训练集适应度值为2.966799078652266
    因子min(close_0, correlation(correlation(return_0, close_0, 4), add(close_0, turn_0), constant(15)))在训练集适应度值为-0.8636302607355644
    因子min(return_0, correlation(covariance(return_0, turn_0, 4), add(close_0, turn_0), constant(constant(15))))在训练集适应度值为2.959473945706857
    因子max(close_0, turn_0)在训练集适应度值为-0.8744566455570912
    因子min(return_0, correlation(correlation(return_0, high_0, constant(15)), add(close_0, turn_0), constant(15)))在训练集适应度值为2.9486859677854813
    因子min(return_0, covariance(return_0, turn_0, 4))在训练集适应度值为-0.5561099512115687
    因子min(close_0, correlation(correlation(return_0, low_0, 4), add(add(close_0, close_0), turn_0), constant(15)))在训练集适应度值为0.14337032821572354
    
    因子min(return_0, correlation(turn_0, add(close_0, return_0), constant(16)))在测试集适应度值为2.1514180437807644
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, max(sum(low_0, 13), ts_argmax(return_0, 6)))在测试集适应度值为2.010908278825105
    因子min(return_0, add(close_0, high_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, close_0, 4), add(log(ts_argmin(close_0, 4)), turn_0), constant(15)))在测试集适应度值为2.18505175714241
    因子min(return_0, correlation(correlation(return_0, sum(low_0, 15), 4), low_0, constant(constant(15))))在测试集适应度值为2.1723126285272114
    因子min(return_0, add(close_0, turn_0))在测试集适应度值为2.1723126285272114
    因子min(turn_0, return_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, correlation(correlation(low_0, min(close_0, low_0), 4), add(close_0, turn_0), constant(15)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, close_0, 4), turn_0, constant(constant(7))))在测试集适应度值为2.19260216347347
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, turn_0), constant(15)))在测试集适应度值为2.176481242699318
    因子min(return_0, correlation(correlation(return_0, high_0, 4), add(turn_0, turn_0), constant(15)))在测试集适应度值为2.1783443872185138
    因子min(return_0, correlation(high_0, add(close_0, turn_0), constant(4)))在测试集适应度值为2.2914317967490816
    因子min(close_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, turn_0, constant(1)), add(close_0, turn_0), 15))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(low_0, close_0, 4), add(close_0, close_0), constant(15)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(low_0, turn_0, 4), turn_0, constant(15)))在测试集适应度值为2.179714420141761
    因子min(return_0, high_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, min(add(close_0, high_0), min(return_0, close_0)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, return_0, 4), return_0, constant(constant(15))))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(turn_0, close_0, 4), add(close_0, return_0), constant(15)))在测试集适应度值为2.1723126285272114
    因子min(low_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(covariance(return_0, turn_0, 4), add(close_0, turn_0), constant(constant(15))))在测试集适应度值为2.176481242699318
    因子min(return_0, correlation(correlation(return_0, high_0, constant(15)), add(close_0, turn_0), constant(15)))在测试集适应度值为2.1723126285272114
    
    pass:24, record:36, population: 24
    
    下一代挖掘的个体数:50
    
    -- 开始第「5」次循环第「5」代挖掘 --
    
    去重前的个体数50
    去重后的个体数36
    
    每代的平均适应度:[-0.04861216167402308, 0.333500623554049, 0.5114537101273361, 0.4419329939210573, 0.6454272749118504]
    因子min(return_0, close_0)在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(high_0, add(correlation(return_0, high_0, 4), turn_0), constant(4)))在训练集适应度值为2.505094361272668
    因子min(correlation(correlation(low_0, close_0, 4), add(close_0, close_0), constant(15)), correlation(correlation(ts_max(ta_sma(high_0, 19), constant(18)), close_0, 4), turn_0, constant(constant(7))))在训练集适应度值为nan
    因子min(return_0, return_0)在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, close_0, 4), add(ts_argmin(close_0, 4), turn_0), constant(15)))在训练集适应度值为2.980276816211829
    因子min(return_0, correlation(correlation(return_0, high_0, constant(15)), add(close_0, turn_0), constant(15)))在训练集适应度值为2.9486859677854813
    因子rank(add(close_0, close_0))在训练集适应度值为-1.2564311245425528
    因子min(return_0, normalize(product(return_0, 8)))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), min(sum(delta(close_0, 14), constant(13)), turn_0), constant(15)))在训练集适应度值为2.868159201957424
    因子min(return_0, correlation(correlation(low_0, turn_0, 4), turn_0, constant(15)))在训练集适应度值为2.972948763921149
    因子sum(max(close_0, low_0), constant(19))在训练集适应度值为-2.3377657992740892
    因子min(return_0, min(add(close_0, high_0), min(return_0, close_0)))在训练集适应度值为2.966799078652266
    因子min(low_0, correlation(correlation(return_0, high_0, 4), add(turn_0, turn_0), constant(15)))在训练集适应度值为-0.8682771678723349
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, add(ts_argmax(return_0, 2), product(close_0, 3))), constant(4)))在训练集适应度值为2.8487267967514684
    因子min(return_0, correlation(correlation(return_0, close_0, 15), turn_0, constant(15)))在训练集适应度值为2.9434245661892158
    因子min(return_0, correlation(correlation(return_0, close_0, 4), turn_0, constant(4)))在训练集适应度值为2.569501006716563
    因子min(return_0, correlation(correlation(high_0, min(close_0, low_0), constant(7)), add(close_0, turn_0), constant(15)))在训练集适应度值为2.970699033176901
    因子min(return_0, correlation(correlation(return_0, close_0, constant(15)), add(log(ts_argmin(close_0, 4)), turn_0), constant(15)))在训练集适应度值为2.9747979489313776
    因子min(return_0, correlation(correlation(return_0, high_0, constant(15)), add(close_0, turn_0), 4))在训练集适应度值为2.968101578703134
    因子min(return_0, correlation(correlation(return_0, high_0, 4), add(turn_0, high_0), constant(15)))在训练集适应度值为2.9626727168568703
    因子min(return_0, covariance(correlation(return_0, close_0, 4), add(log(close_0), turn_0), constant(15)))在训练集适应度值为2.9151634642775694
    因子min(return_0, correlation(correlation(low_0, min(close_0, low_0), 4), add(close_0, turn_0), constant(13)))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, turn_0), constant(19)))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, max(close_0, turn_0), 4), low_0, constant(constant(15))))在训练集适应度值为2.9626727168568703
    因子sub(high_0, close_0)在训练集适应度值为-1.3345772507359064
    因子min(return_0, correlation(high_0, add(close_0, turn_0), constant(6)))在训练集适应度值为1.8745224240863885
    因子min(return_0, min(add(turn_0, high_0), close_0))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(return_0, high_0, 4), add(turn_0, product(turn_0, 1)), 15))在训练集适应度值为2.964789489779659
    因子min(return_0, turn_0)在训练集适应度值为3.2711429509050887
    因子min(return_0, min(turn_0, min(return_0, close_0)))在训练集适应度值为3.2711429509050887
    因子min(return_0, correlation(correlation(return_0, close_0, 15), add(log(ts_argmin(close_0, 4)), turn_0), constant(15)))在训练集适应度值为2.9747979489313776
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, turn_0), constant(18)))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(close_0, turn_0, constant(4)))在训练集适应度值为1.515779763523224
    因子min(return_0, correlation(high_0, add(close_0, turn_0), constant(4)))在训练集适应度值为2.33476374410298
    因子min(return_0, correlation(correlation(return_0, close_0, 1), turn_0, constant(constant(7))))在训练集适应度值为2.966799078652266
    因子min(return_0, correlation(correlation(low_0, min(close_0, low_0), 4), ts_min(high_0, 17), constant(15)))在训练集适应度值为2.966799078652266
    
    因子min(return_0, close_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(high_0, add(correlation(return_0, high_0, 4), turn_0), constant(4)))在测试集适应度值为2.0852533474683965
    因子min(return_0, return_0)在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, close_0, 4), add(ts_argmin(close_0, 4), turn_0), constant(15)))在测试集适应度值为2.18505175714241
    因子min(return_0, correlation(correlation(return_0, high_0, constant(15)), add(close_0, turn_0), constant(15)))在测试集适应度值为2.1723126285272114
    因子min(return_0, normalize(product(return_0, 8)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), min(sum(delta(close_0, 14), constant(13)), turn_0), constant(15)))在测试集适应度值为2.148689102719969
    因子min(return_0, correlation(correlation(low_0, turn_0, 4), turn_0, constant(15)))在测试集适应度值为2.179714420141761
    因子min(return_0, min(add(close_0, high_0), min(return_0, close_0)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, add(ts_argmax(return_0, 2), product(close_0, 3))), constant(4)))在测试集适应度值为2.1857125371022694
    因子min(return_0, correlation(correlation(return_0, close_0, 15), turn_0, constant(15)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, close_0, 4), turn_0, constant(4)))在测试集适应度值为2.153683143940772
    因子min(return_0, correlation(correlation(high_0, min(close_0, low_0), constant(7)), add(close_0, turn_0), constant(15)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, close_0, constant(15)), add(log(ts_argmin(close_0, 4)), turn_0), constant(15)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, high_0, constant(15)), add(close_0, turn_0), 4))在测试集适应度值为2.1832887080343206
    因子min(return_0, correlation(correlation(return_0, high_0, 4), add(turn_0, high_0), constant(15)))在测试集适应度值为2.176481242699318
    因子min(return_0, covariance(correlation(return_0, close_0, 4), add(log(close_0), turn_0), constant(15)))在测试集适应度值为2.1993659861755304
    因子min(return_0, correlation(correlation(low_0, min(close_0, low_0), 4), add(close_0, turn_0), constant(13)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, turn_0), constant(19)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, max(close_0, turn_0), 4), low_0, constant(constant(15))))在测试集适应度值为2.176481242699318
    因子min(return_0, min(add(turn_0, high_0), close_0))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, high_0, 4), add(turn_0, product(turn_0, 1)), 15))在测试集适应度值为2.1783443872185138
    因子min(return_0, turn_0)在测试集适应度值为1.9628287395834418
    因子min(return_0, min(turn_0, min(return_0, close_0)))在测试集适应度值为1.9628287395834418
    因子min(return_0, correlation(correlation(return_0, close_0, 15), add(log(ts_argmin(close_0, 4)), turn_0), constant(15)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(return_0, turn_0, 4), add(close_0, turn_0), constant(18)))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(high_0, add(close_0, turn_0), constant(4)))在测试集适应度值为2.2914317967490816
    因子min(return_0, correlation(correlation(return_0, close_0, 1), turn_0, constant(constant(7))))在测试集适应度值为2.1723126285272114
    因子min(return_0, correlation(correlation(low_0, min(close_0, low_0), 4), ts_min(high_0, 17), constant(15)))在测试集适应度值为2.1723126285272114
    
    pass:29, record:36, population: 29
    
    下一代挖掘的个体数:50
    
    In [23]:
    m1.factors.read()
    
    Out[23]:
    {}
    In [ ]: