{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-773:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-4597:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-43892:features_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-19798:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-553:input_data","from_node_id":"-113:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-773:data"},{"to_node_id":"-43989:input_data","from_node_id":"-553:data"},{"to_node_id":"-4597:input_2","from_node_id":"-4592:data"},{"to_node_id":"-106:features","from_node_id":"-43892:data"},{"to_node_id":"-113:features","from_node_id":"-43892:data"},{"to_node_id":"-44099:input_1","from_node_id":"-4597:data_1"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-43989:data"},{"to_node_id":"-19798:features","from_node_id":"-44099:data_2"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-01-20","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1) - 1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-773","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-773"},{"name":"input_2","node_id":"-773"}],"output_ports":[{"name":"data","node_id":"-773"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-553","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-553"}],"output_ports":[{"name":"data","node_id":"-553"},{"name":"left_data","node_id":"-553"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-4592","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-4592"}],"output_ports":[{"name":"data","node_id":"-4592"}],"cacheable":true,"seq_num":14,"comment":"板块因子","comment_collapsed":true},{"node_id":"-43892","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"buy_cond_1 = 1#where(sum(price_limit_status_1==3, 5)>0, 1, 0)\nbuy_cond_2 = where(volume_0/volume_1>1, 1, 0)\nbuy_cond_3 = where(return_0>1.05, 1, 0)\nbuy_cond_4 = where(list_days_0>120, 1, 0)\n\ne1 = mf_net_amount_l_0\n\n#目标变量\ny = shift(close_0,-2)/shift(open_0,-1)\n\n#未来两日股票的收益\nreturn_2_day=(shift(close_0, -2)-shift(open_0, -1))/shift(open_0, -1)\n#未来三日股票的收益\nreturn_3_day=(shift(close_0, -3)-shift(open_0, -1))/shift(open_0, -1)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-43892"}],"output_ports":[{"name":"data","node_id":"-43892"}],"cacheable":true,"seq_num":40,"comment":"测试银子","comment_collapsed":false},{"node_id":"-4597","module_id":"BigQuantSpace.features_append.features_append-v1","parameters":[],"input_ports":[{"name":"input_1","node_id":"-4597"},{"name":"input_2","node_id":"-4597"}],"output_ports":[{"name":"data_1","node_id":"-4597"}],"cacheable":true,"seq_num":41,"comment":"","comment_collapsed":true},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"121","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-43989","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"buy_cond_1==1&buy_cond_2==1&buy_cond_3==1&buy_cond_4==1","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-43989"}],"output_ports":[{"name":"data","node_id":"-43989"},{"name":"left_data","node_id":"-43989"}],"cacheable":true,"seq_num":52,"comment":"","comment_collapsed":true},{"node_id":"-44099","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3, SW_type):\n feature_list = input_1.read()\n new_feature_list = []\n feature_jc_list = []\n for feature in feature_list:\n splitStrindex = feature.find(\"=\")\n feature_key = feature[0:splitStrindex].strip()\n feature_value = feature[splitStrindex:-1].strip()\n feature_jc_list.append(feature_key)\n new_feature_list.append('n_'+feature_key+'=rank('+feature_key+')')\n print('因子个数:{}'.format(len(new_feature_list)))\n data_1 = DataSource.write_pickle(new_feature_list)\n data_2 = DataSource.write_pickle(feature_jc_list)\n return Outputs(data_1=data_1,data_2=data_2)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\n 'SW_type':'name_SW2'\n}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"data_1,data_2","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-44099"},{"name":"input_2","node_id":"-44099"},{"name":"input_3","node_id":"-44099"}],"output_ports":[{"name":"data_1","node_id":"-44099"},{"name":"data_2","node_id":"-44099"},{"name":"data_3","node_id":"-44099"}],"cacheable":true,"seq_num":64,"comment":"申万二级收益","comment_collapsed":true},{"node_id":"-1389","module_id":"BigQuantSpace.hyper_run.hyper_run-v1","parameters":[{"name":"run","value":"\ndef bigquant_run(bq_graph, inputs):\n g = bq_graph\n parameters_list = []\n #原始因子\n features = [\n ]\n add_features = [\n 'd1 = turn_0',\n 'd2 = turn_5'\n ]\n i = 0\n for feature in add_features:\n parameters = {}\n temp = list(set(features)).copy()\n if isinstance(feature,list)==True:\n for x in feature:\n temp.append(x) \n else:\n temp.append(feature)\n temp = list(set(temp))\n parameters['m3.features'] = '\\n'.join(temp)\n parameters_list.append({'parameters': parameters})\n i+=1\n \n #每组因子进行回测\n def run(parameters):\n try:\n result = g.run(parameters)\n return result\n except Exception as e:\n print('ERROR --------', e)\n return None\n results = T.parallel_map(run, parameters_list, max_workers=1, remote_run=False, silent=True)\n \n return results","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-1389"},{"name":"input_1","node_id":"-1389"},{"name":"input_2","node_id":"-1389"},{"name":"input_3","node_id":"-1389"}],"output_ports":[{"name":"result","node_id":"-1389"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-19798","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"mean","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-19798"},{"name":"features","node_id":"-19798"}],"output_ports":[{"name":"data","node_id":"-19798"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='-17,-180,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='311,-45,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='407,-186,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='155,176,200,200'/><node_position Node='-113' Position='26,5,200,200'/><node_position Node='-773' Position='310,10,200,200'/><node_position Node='-553' Position='27,61,200,200'/><node_position Node='-4592' Position='907.213623046875,-174.9419708251953,200,200'/><node_position Node='-43892' Position='585.3641967773438,-115.53826904296875,200,200'/><node_position Node='-4597' Position='629,73,200,200'/><node_position Node='-106' Position='24,-48,200,200'/><node_position Node='-43989' Position='26,115,200,200'/><node_position Node='-44099' Position='602.0765380859375,178,200,200'/><node_position Node='-1389' Position='586,-235,200,200'/><node_position Node='-19798' Position='182.69381713867188,289.6728210449219,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-02-21 11:03:17.723552] INFO: AI: 开始并行运算, remote_run=False, workers=1 ..
[2023-02-21 11:03:17.730284] INFO: AI: [ParallelEx(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[2023-02-21 11:03:17.749689] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-02-21 11:03:17.765603] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:17.767846] INFO: moduleinvoker: instruments.v2 运行完成[0.018167s].
[2023-02-21 11:03:17.773901] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-21 11:03:17.790355] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:17.794742] INFO: moduleinvoker: input_features.v1 运行完成[0.020853s].
[2023-02-21 11:03:17.824019] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-21 11:03:17.837953] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:17.840530] INFO: moduleinvoker: input_features.v1 运行完成[0.016505s].
[2023-02-21 11:03:17.854694] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2023-02-21 11:03:17.861578] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:17.863427] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.008737s].
[2023-02-21 11:03:17.867490] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-21 11:03:17.884742] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:17.887937] INFO: moduleinvoker: input_features.v1 运行完成[0.020419s].
[2023-02-21 11:03:17.945886] INFO: moduleinvoker: features_append.v1 开始运行..
[2023-02-21 11:03:17.954638] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:17.957222] INFO: moduleinvoker: features_append.v1 运行完成[0.011515s].
[2023-02-21 11:03:17.964408] INFO: moduleinvoker: standardlize.v8 开始运行..
[2023-02-21 11:03:17.971734] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:17.975255] INFO: moduleinvoker: standardlize.v8 运行完成[0.010788s].
[2023-02-21 11:03:18.024652] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-02-21 11:03:18.034944] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.039224] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.014574s].
[2023-02-21 11:03:18.055287] INFO: moduleinvoker: cached.v3 开始运行..
[2023-02-21 11:03:18.062669] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.064812] INFO: moduleinvoker: cached.v3 运行完成[0.009533s].
[2023-02-21 11:03:18.072481] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-02-21 11:03:18.082180] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.087076] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.014587s].
[2023-02-21 11:03:18.134819] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2023-02-21 11:03:18.143401] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.146369] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[0.01157s].
[2023-02-21 11:03:18.154781] INFO: moduleinvoker: filter.v3 开始运行..
[2023-02-21 11:03:18.161962] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.163597] INFO: moduleinvoker: filter.v3 运行完成[0.008819s].
[2023-02-21 11:03:18.173974] INFO: moduleinvoker: join.v3 开始运行..
[2023-02-21 11:03:18.191579] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.198429] INFO: moduleinvoker: join.v3 运行完成[0.024468s].
[2023-02-21 11:03:18.250017] INFO: moduleinvoker: fillnan.v1 开始运行..
[2023-02-21 11:03:18.258084] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.260666] INFO: moduleinvoker: fillnan.v1 运行完成[0.010669s].
[2023-02-21 11:03:18.262626] INFO: AI: [ParallelEx(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.5s remaining: 0.0s
[2023-02-21 11:03:18.269974] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-02-21 11:03:18.284675] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.288332] INFO: moduleinvoker: instruments.v2 运行完成[0.018352s].
[2023-02-21 11:03:18.301754] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-21 11:03:18.316045] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.322320] INFO: moduleinvoker: input_features.v1 运行完成[0.020573s].
[2023-02-21 11:03:18.341646] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-21 11:03:18.349049] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.350762] INFO: moduleinvoker: input_features.v1 运行完成[0.009161s].
[2023-02-21 11:03:18.359611] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2023-02-21 11:03:18.372143] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.387258] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.027603s].
[2023-02-21 11:03:18.416082] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-21 11:03:18.435632] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.439639] INFO: moduleinvoker: input_features.v1 运行完成[0.023603s].
[2023-02-21 11:03:18.452416] INFO: moduleinvoker: features_append.v1 开始运行..
[2023-02-21 11:03:18.459692] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.461758] INFO: moduleinvoker: features_append.v1 运行完成[0.009355s].
[2023-02-21 11:03:18.467931] INFO: moduleinvoker: standardlize.v8 开始运行..
[2023-02-21 11:03:18.477234] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.488640] INFO: moduleinvoker: standardlize.v8 运行完成[0.020679s].
[2023-02-21 11:03:18.549176] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-02-21 11:03:18.556120] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.558226] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.009066s].
[2023-02-21 11:03:18.571059] INFO: moduleinvoker: cached.v3 开始运行..
[2023-02-21 11:03:18.584254] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.590001] INFO: moduleinvoker: cached.v3 运行完成[0.018935s].
[2023-02-21 11:03:18.643650] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-02-21 11:03:18.654894] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.658386] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.014771s].
[2023-02-21 11:03:18.667983] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2023-02-21 11:03:18.678142] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.687892] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[0.019876s].
[2023-02-21 11:03:18.737307] INFO: moduleinvoker: filter.v3 开始运行..
[2023-02-21 11:03:18.748433] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.751350] INFO: moduleinvoker: filter.v3 运行完成[0.014075s].
[2023-02-21 11:03:18.761898] INFO: moduleinvoker: join.v3 开始运行..
[2023-02-21 11:03:18.776703] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.781287] INFO: moduleinvoker: join.v3 运行完成[0.019326s].
[2023-02-21 11:03:18.827639] INFO: moduleinvoker: fillnan.v1 开始运行..
[2023-02-21 11:03:18.838117] INFO: moduleinvoker: 命中缓存
[2023-02-21 11:03:18.841695] INFO: moduleinvoker: fillnan.v1 运行完成[0.014079s].
[2023-02-21 11:03:18.844716] INFO: AI: [ParallelEx(n_jobs=1)]: Done 2 out of 2 | elapsed: 1.1s remaining: 0.0s
[2023-02-21 11:03:18.848390] INFO: AI: [ParallelEx(n_jobs=1)]: Done 2 out of 2 | elapsed: 1.1s finished
[2023-02-21 11:03:18.851357] INFO: moduleinvoker: hyper_run.v1 运行完成[1.128761s].