{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-109:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"-109:input_2","from_node_id":"-121:data_1"},{"to_node_id":"-250:options_data","from_node_id":"-109:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read()['data']\n context.param = context.options['data'].read()[\"param\"]\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=context.param[\"buy_cost\"], sell_cost=context.param[\"sell_cost\"], min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-121","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3, buy_cost, sell_cost):\n # 示例代码如下。在这里编写您的代码\n param = {\n \"buy_cost\": buy_cost,\n \"sell_cost\": sell_cost\n }\n data_1 = DataSource.write_pickle(param)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\n \"buy_cost\": 0.0003,\n \"sell_cost\": 0.0013 \n}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-121"},{"name":"input_2","node_id":"-121"},{"name":"input_3","node_id":"-121"}],"output_ports":[{"name":"data_1","node_id":"-121"},{"name":"data_2","node_id":"-121"},{"name":"data_3","node_id":"-121"}],"cacheable":true,"seq_num":4,"comment":"暴露Trade的参数","comment_collapsed":false},{"node_id":"-109","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read()\n param = input_2.read()\n \n data = {\n \"param\": param,\n \"data\": df\n }\n data_1 = DataSource.write_pickle(data)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-109"},{"name":"input_2","node_id":"-109"},{"name":"input_3","node_id":"-109"}],"output_ports":[{"name":"data_1","node_id":"-109"},{"name":"data_2","node_id":"-109"},{"name":"data_3","node_id":"-109"}],"cacheable":true,"seq_num":5,"comment":"合并数据和Trade参数","comment_collapsed":false},{"node_id":"-16105","module_id":"BigQuantSpace.hyper_parameter_search.hyper_parameter_search-v1","parameters":[{"name":"param_grid_builder","value":"def bigquant_run():\n param_grid = {}\n\n # 在这里设置需要调优的参数备选\n param_grid[\"m4.params\"] = [\n \"\"\"{\"buy_cost\": 0.0003, \"sell_cost\": 0.0013}\"\"\",\n \"\"\"{\"buy_cost\": 0.001, \"sell_cost\": 0.001}\"\"\",\n \"\"\"{\"buy_cost\": 0.002, \"sell_cost\": 0.002}\"\"\",\n \"\"\"{\"buy_cost\": 0.003, \"sell_cost\": 0.003}\"\"\"\n ]\n return param_grid \n","type":"Literal","bound_global_parameter":null},{"name":"scoring","value":"def bigquant_run(result):\n # 评分:收益/最大回撤\n score = result.get('m7').read_raw_perf()['sharpe'].tail(1)[0]\n return {'score': score}\n","type":"Literal","bound_global_parameter":null},{"name":"search_algorithm","value":"网格搜索","type":"Literal","bound_global_parameter":null},{"name":"search_iterations","value":10,"type":"Literal","bound_global_parameter":null},{"name":"random_state","value":"","type":"Literal","bound_global_parameter":null},{"name":"workers","value":1,"type":"Literal","bound_global_parameter":null},{"name":"worker_distributed_run","value":"False","type":"Literal","bound_global_parameter":null},{"name":"worker_silent","value":"False","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-16105"},{"name":"input_1","node_id":"-16105"},{"name":"input_2","node_id":"-16105"},{"name":"input_3","node_id":"-16105"}],"output_ports":[{"name":"result","node_id":"-16105"}],"cacheable":false,"seq_num":10,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='638,561,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='858,904,200,200'/><node_position Node='-121' Position='1347.412353515625,636.1369018554688,200,200'/><node_position Node='-109' Position='1039.1685791015625,757.2470703125,200,200'/><node_position Node='-16105' Position='351,721,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-05-20 11:43:44.521394] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-20 11:43:44.685975] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.688048] INFO: moduleinvoker: instruments.v2 运行完成[0.166654s].
[2022-05-20 11:43:44.693092] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-20 11:43:44.698675] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.700578] INFO: moduleinvoker: input_features.v1 运行完成[0.007476s].
[2022-05-20 11:43:44.706323] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-20 11:43:44.711341] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.712578] INFO: moduleinvoker: instruments.v2 运行完成[0.006237s].
[2022-05-20 11:43:44.726060] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-20 11:43:44.739574] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.741072] INFO: moduleinvoker: cached.v3 运行完成[0.015027s].
[2022-05-20 11:43:44.752276] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-05-20 11:43:44.768263] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.769795] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.017527s].
[2022-05-20 11:43:44.797246] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-20 11:43:44.811026] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.812772] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.015546s].
[2022-05-20 11:43:44.826171] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-20 11:43:44.838225] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.839878] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.013727s].
[2022-05-20 11:43:44.848925] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-20 11:43:44.859792] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.861994] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.013062s].
[2022-05-20 11:43:44.875091] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-20 11:43:44.898414] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.899943] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.024851s].
[2022-05-20 11:43:44.910053] INFO: moduleinvoker: join.v3 开始运行..
[2022-05-20 11:43:44.917729] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.919036] INFO: moduleinvoker: join.v3 运行完成[0.009005s].
[2022-05-20 11:43:44.929304] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-05-20 11:43:44.937763] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.939203] INFO: moduleinvoker: dropnan.v1 运行完成[0.009926s].
[2022-05-20 11:43:44.949493] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-05-20 11:43:44.957856] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:44.959130] INFO: moduleinvoker: dropnan.v1 运行完成[0.009637s].
[2022-05-20 11:43:44.967383] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-05-20 11:43:44.981300] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:45.059988] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.092572s].
[2022-05-20 11:43:45.069905] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-05-20 11:43:45.082504] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:45.084023] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.014123s].
[2022-05-20 11:43:45.096914] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-20 11:43:45.105723] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:45.108238] INFO: moduleinvoker: cached.v3 运行完成[0.011377s].
[2022-05-20 11:43:45.163309] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-05-20 11:43:45.178386] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:52.957823] INFO: moduleinvoker: backtest.v8 运行完成[7.794515s].
[2022-05-20 11:43:52.959525] INFO: moduleinvoker: trade.v4 运行完成[7.842587s].
[2022-05-20 11:43:52.975393] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-20 11:43:52.981517] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:52.982921] INFO: moduleinvoker: instruments.v2 运行完成[0.007534s].
[2022-05-20 11:43:52.986866] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-20 11:43:52.992487] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:52.993760] INFO: moduleinvoker: input_features.v1 运行完成[0.006892s].
[2022-05-20 11:43:52.999610] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-20 11:43:53.004320] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.005522] INFO: moduleinvoker: instruments.v2 运行完成[0.005911s].
[2022-05-20 11:43:53.015859] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-20 11:43:53.026240] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.027533] INFO: moduleinvoker: cached.v3 运行完成[0.011676s].
[2022-05-20 11:43:53.035913] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-05-20 11:43:53.042119] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.043360] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.007446s].
[2022-05-20 11:43:53.054209] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-20 11:43:53.059531] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.061543] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007346s].
[2022-05-20 11:43:53.076665] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-20 11:43:53.083765] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.085692] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.009045s].
[2022-05-20 11:43:53.093222] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-20 11:43:53.104795] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.106160] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.012939s].
[2022-05-20 11:43:53.114054] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-20 11:43:53.119321] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.120503] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.006446s].
[2022-05-20 11:43:53.128600] INFO: moduleinvoker: join.v3 开始运行..
[2022-05-20 11:43:53.132754] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.133904] INFO: moduleinvoker: join.v3 运行完成[0.005303s].
[2022-05-20 11:43:53.141517] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-05-20 11:43:53.145764] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.146917] INFO: moduleinvoker: dropnan.v1 运行完成[0.005397s].
[2022-05-20 11:43:53.154882] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-05-20 11:43:53.158864] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.160050] INFO: moduleinvoker: dropnan.v1 运行完成[0.005167s].
[2022-05-20 11:43:53.172484] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-05-20 11:43:53.179084] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.233341] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.060845s].
[2022-05-20 11:43:53.240928] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-05-20 11:43:53.255596] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.257117] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.016184s].
[2022-05-20 11:43:53.274244] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-20 11:43:53.285922] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:53.287376] INFO: moduleinvoker: cached.v3 运行完成[0.013142s].
[2022-05-20 11:43:53.335948] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-05-20 11:43:53.347779] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.666718] INFO: moduleinvoker: backtest.v8 运行完成[5.330749s].
[2022-05-20 11:43:58.669258] INFO: moduleinvoker: trade.v4 运行完成[5.376343s].
[2022-05-20 11:43:58.678925] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-20 11:43:58.685371] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.687345] INFO: moduleinvoker: instruments.v2 运行完成[0.008424s].
[2022-05-20 11:43:58.693803] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-20 11:43:58.699614] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.701517] INFO: moduleinvoker: input_features.v1 运行完成[0.007715s].
[2022-05-20 11:43:58.707523] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-20 11:43:58.712994] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.714973] INFO: moduleinvoker: instruments.v2 运行完成[0.007445s].
[2022-05-20 11:43:58.728246] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-20 11:43:58.735257] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.736744] INFO: moduleinvoker: cached.v3 运行完成[0.00854s].
[2022-05-20 11:43:58.745820] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-05-20 11:43:58.751474] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.752928] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.007117s].
[2022-05-20 11:43:58.765761] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-20 11:43:58.771314] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.773053] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007306s].
[2022-05-20 11:43:58.785216] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-20 11:43:58.791358] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.793479] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.00827s].
[2022-05-20 11:43:58.802807] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-20 11:43:58.808561] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.810442] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.007631s].
[2022-05-20 11:43:58.819092] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-20 11:43:58.825599] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.827427] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.008331s].
[2022-05-20 11:43:58.840369] INFO: moduleinvoker: join.v3 开始运行..
[2022-05-20 11:43:58.845935] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.847977] INFO: moduleinvoker: join.v3 运行完成[0.007601s].
[2022-05-20 11:43:58.857823] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-05-20 11:43:58.871260] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.873309] INFO: moduleinvoker: dropnan.v1 运行完成[0.015488s].
[2022-05-20 11:43:58.883450] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-05-20 11:43:58.890114] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.892670] INFO: moduleinvoker: dropnan.v1 运行完成[0.009221s].
[2022-05-20 11:43:58.901807] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-05-20 11:43:58.909329] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:58.984468] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.082641s].
[2022-05-20 11:43:58.994241] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-05-20 11:43:59.003395] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:59.005521] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.011261s].
[2022-05-20 11:43:59.019965] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-20 11:43:59.029972] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:43:59.031878] INFO: moduleinvoker: cached.v3 运行完成[0.011928s].
[2022-05-20 11:43:59.074273] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-05-20 11:43:59.095637] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:06.935871] INFO: moduleinvoker: backtest.v8 运行完成[7.861594s].
[2022-05-20 11:44:06.937587] INFO: moduleinvoker: trade.v4 运行完成[7.897845s].
[2022-05-20 11:44:06.946254] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-20 11:44:06.952908] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:06.954266] INFO: moduleinvoker: instruments.v2 运行完成[0.008016s].
[2022-05-20 11:44:06.958440] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-20 11:44:06.963773] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:06.965044] INFO: moduleinvoker: input_features.v1 运行完成[0.00661s].
[2022-05-20 11:44:06.974228] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-20 11:44:06.979703] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:06.980978] INFO: moduleinvoker: instruments.v2 运行完成[0.006749s].
[2022-05-20 11:44:06.992141] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-20 11:44:07.000613] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.002192] INFO: moduleinvoker: cached.v3 运行完成[0.010064s].
[2022-05-20 11:44:07.010762] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-05-20 11:44:07.016099] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.017569] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.006798s].
[2022-05-20 11:44:07.029095] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-20 11:44:07.034746] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.036365] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007289s].
[2022-05-20 11:44:07.050296] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-20 11:44:07.063216] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.065283] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.015091s].
[2022-05-20 11:44:07.073952] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-20 11:44:07.078999] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.080408] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.006455s].
[2022-05-20 11:44:07.088204] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-20 11:44:07.093458] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.095058] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.006855s].
[2022-05-20 11:44:07.103970] INFO: moduleinvoker: join.v3 开始运行..
[2022-05-20 11:44:07.108452] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.110083] INFO: moduleinvoker: join.v3 运行完成[0.006116s].
[2022-05-20 11:44:07.120644] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-05-20 11:44:07.125650] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.127036] INFO: moduleinvoker: dropnan.v1 运行完成[0.00639s].
[2022-05-20 11:44:07.136332] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-05-20 11:44:07.141192] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.142646] INFO: moduleinvoker: dropnan.v1 运行完成[0.006311s].
[2022-05-20 11:44:07.149943] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-05-20 11:44:07.156100] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.216075] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.066118s].
[2022-05-20 11:44:07.229235] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-05-20 11:44:07.240163] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.241656] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.012423s].
[2022-05-20 11:44:07.251913] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-20 11:44:07.262909] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:07.264367] INFO: moduleinvoker: cached.v3 运行完成[0.012456s].
[2022-05-20 11:44:07.311663] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-05-20 11:44:07.325083] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.565364] INFO: moduleinvoker: backtest.v8 运行完成[6.253704s].
[2022-05-20 11:44:13.567689] INFO: moduleinvoker: trade.v4 运行完成[6.296916s].
[2022-05-20 11:44:13.578367] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-20 11:44:13.584429] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.585722] INFO: moduleinvoker: instruments.v2 运行完成[0.007358s].
[2022-05-20 11:44:13.589813] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-20 11:44:13.597725] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.598904] INFO: moduleinvoker: input_features.v1 运行完成[0.009093s].
[2022-05-20 11:44:13.604419] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-20 11:44:13.609358] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.610527] INFO: moduleinvoker: instruments.v2 运行完成[0.006108s].
[2022-05-20 11:44:13.626536] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-20 11:44:13.634188] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.635798] INFO: moduleinvoker: cached.v3 运行完成[0.00928s].
[2022-05-20 11:44:13.645619] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-05-20 11:44:13.654054] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.656153] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.010538s].
[2022-05-20 11:44:13.671688] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-20 11:44:13.676526] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.677836] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.006164s].
[2022-05-20 11:44:13.690189] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-20 11:44:13.695009] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.696532] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.006358s].
[2022-05-20 11:44:13.704413] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-20 11:44:13.709424] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.711294] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.006876s].
[2022-05-20 11:44:13.724498] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-20 11:44:13.729499] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.730753] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.006252s].
[2022-05-20 11:44:13.739287] INFO: moduleinvoker: join.v3 开始运行..
[2022-05-20 11:44:13.743808] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.745054] INFO: moduleinvoker: join.v3 运行完成[0.005764s].
[2022-05-20 11:44:13.755588] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-05-20 11:44:13.760567] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.762397] INFO: moduleinvoker: dropnan.v1 运行完成[0.006809s].
[2022-05-20 11:44:13.772737] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-05-20 11:44:13.777336] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.778743] INFO: moduleinvoker: dropnan.v1 运行完成[0.006008s].
[2022-05-20 11:44:13.788631] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-05-20 11:44:13.807899] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.873681] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.085015s].
[2022-05-20 11:44:13.884465] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-05-20 11:44:13.892899] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.894527] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.010065s].
[2022-05-20 11:44:13.907763] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-20 11:44:13.913096] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:13.914474] INFO: moduleinvoker: cached.v3 运行完成[0.006727s].
[2022-05-20 11:44:13.964426] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-05-20 11:44:13.971566] INFO: moduleinvoker: 命中缓存
[2022-05-20 11:44:20.000942] INFO: moduleinvoker: backtest.v8 运行完成[6.036514s].
[2022-05-20 11:44:20.002824] INFO: moduleinvoker: trade.v4 运行完成[6.079974s].
[2022-05-20 11:44:20.004271] INFO: moduleinvoker: hyper_parameter_search.v1 运行完成[35.49067s].
Fitting 1 folds for each of 4 candidates, totalling 4 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[CV 1/1; 1/4] START m4.params={"buy_cost": 0.0003, "sell_cost": 0.0013}.........
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-eba9e11df5ac453db7df4098863b8c65"}/bigcharts-data-end
- 收益率58.34%
- 年化收益率61.06%
- 基准收益率-5.2%
- 阿尔法0.66
- 贝塔0.39
- 夏普比率1.87
- 胜率0.51
- 盈亏比1.42
- 收益波动率25.72%
- 信息比率0.13
- 最大回撤15.12%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-6c9b5b1c163a4700a96d627233b44876"}/bigcharts-data-end
[CV 1/1; 1/4] END m4.params={"buy_cost": 0.0003, "sell_cost": 0.0013}; total time= 8.4s
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 8.4s remaining: 0.0s
[CV 1/1; 2/4] START m4.params={"buy_cost": 0.001, "sell_cost": 0.001}...........
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-4de775a6eda44b81a03e6ece8c2f13f1"}/bigcharts-data-end
- 收益率58.67%
- 年化收益率61.4%
- 基准收益率-5.2%
- 阿尔法0.67
- 贝塔0.42
- 夏普比率1.77
- 胜率0.52
- 盈亏比1.41
- 收益波动率27.44%
- 信息比率0.12
- 最大回撤15.23%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-456400c0f48f42a78b12b1fbc67ccec5"}/bigcharts-data-end
[CV 1/1; 2/4] END m4.params={"buy_cost": 0.001, "sell_cost": 0.001}; total time= 5.7s
[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 14.2s remaining: 0.0s
[CV 1/1; 3/4] START m4.params={"buy_cost": 0.002, "sell_cost": 0.002}...........
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-dd9d12ff66e0474bbfa6079eba2c2e0a"}/bigcharts-data-end
- 收益率45.64%
- 年化收益率47.68%
- 基准收益率-5.2%
- 阿尔法0.53
- 贝塔0.44
- 夏普比率1.45
- 胜率0.53
- 盈亏比1.38
- 收益波动率27.49%
- 信息比率0.1
- 最大回撤15.77%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9941db7e01b947f893568541ae694686"}/bigcharts-data-end
[CV 1/1; 3/4] END m4.params={"buy_cost": 0.002, "sell_cost": 0.002}; total time= 8.3s
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 22.4s remaining: 0.0s
[CV 1/1; 4/4] START m4.params={"buy_cost": 0.003, "sell_cost": 0.003}...........
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-2f28f1b7f06f42d48fbefa8db9d06b04"}/bigcharts-data-end
- 收益率28.8%
- 年化收益率30.02%
- 基准收益率-5.2%
- 阿尔法0.35
- 贝塔0.42
- 夏普比率0.98
- 胜率0.53
- 盈亏比1.4
- 收益波动率27.51%
- 信息比率0.07
- 最大回撤16.49%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-6b7eda8651db4449a707bbbace29ebb2"}/bigcharts-data-end
[CV 1/1; 4/4] END m4.params={"buy_cost": 0.003, "sell_cost": 0.003}; total time= 6.6s
[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 29.1s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 29.1s finished
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-c02b93430b444c50800cee9e265a431b"}/bigcharts-data-end
- 收益率58.34%
- 年化收益率61.06%
- 基准收益率-5.2%
- 阿尔法0.66
- 贝塔0.39
- 夏普比率1.87
- 胜率0.51
- 盈亏比1.42
- 收益波动率25.72%
- 信息比率0.13
- 最大回撤15.12%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-12a29de57cc949b291f35e7c00db8b66"}/bigcharts-data-end