复制链接
克隆策略

StockRanker多因子选股策略

In [7]:
import itertools
param_grid = {}

period_list = [5,20,60,100,120] 

# 在这里设置需要调优的参数备选
feature_list = [
'''
double_low = close + bond_prem_ratio
remain_size
rank_swing_volatility_5 = nanstd((high-low)/pre_close, {0})*sqrt(200)*100
'''.format(period) for period in period_list
]
param_grid["m14.params"] = [
    """{"stock_count": 3, "hold_days": 3}""",
    """{"stock_count": 4, "hold_days": 4}""",
    """{"stock_count": 3, "hold_days": 1}""",
    """{"stock_count": 4, "hold_days": 2}"""
]
param_grid['m3.features'] = feature_list
In [9]:
param_grid
Out[9]:
{'m14.params': ['{"stock_count": 3, "hold_days": 3}',
  '{"stock_count": 4, "hold_days": 4}',
  '{"stock_count": 3, "hold_days": 1}',
  '{"stock_count": 4, "hold_days": 2}'],
 'm3.features': ['\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100\n',
  '\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 20)*sqrt(200)*100\n',
  '\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 60)*sqrt(200)*100\n',
  '\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 100)*sqrt(200)*100\n',
  '\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 120)*sqrt(200)*100\n']}
In [15]:
m21.read_raw_perf()['sharpe'].tail(1)[0]
# score = result.get('m7').read_raw_perf()['sharpe'].tail(1)[0]
Out[15]:
3.681702751663812

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-281:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-109:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-281:data"},{"to_node_id":"-259:input_1","from_node_id":"-295:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-129:data"},{"to_node_id":"-129:input_data","from_node_id":"-147:data_1"},{"to_node_id":"-206:data1","from_node_id":"-147:data_2"},{"to_node_id":"-228:input_1","from_node_id":"-505:data"},{"to_node_id":"-758:input","from_node_id":"-327:data"},{"to_node_id":"-228:input_2","from_node_id":"-327:data"},{"to_node_id":"-1481:instruments","from_node_id":"-758:instrument_list"},{"to_node_id":"-249:data2","from_node_id":"-1415:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-281:input_data","from_node_id":"-206:data"},{"to_node_id":"-206:data2","from_node_id":"-228:data_1"},{"to_node_id":"-249:data1","from_node_id":"-228:data_2"},{"to_node_id":"-295:input_data","from_node_id":"-249:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-259:data_1"},{"to_node_id":"-1481:options_data","from_node_id":"-109:data_1"},{"to_node_id":"-109:input_2","from_node_id":"-121:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"3","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"100","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"2","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.auto_labeler_on_datasource.auto_labeler_on_datasource-v1","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 10)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-147","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = DataSource(\"bar1d_CN_CONBOND\").read(start_date=\"2017-06-01\", end_date=\"2020-06-30\")\n df2 = df.drop(['close'],axis = 1)\n data_1 = DataSource.write_df(df)\n data_2 = DataSource.write_df(df2)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-147"},{"name":"input_2","node_id":"-147"},{"name":"input_3","node_id":"-147"}],"output_ports":[{"name":"data_1","node_id":"-147"},{"name":"data_2","node_id":"-147"},{"name":"data_3","node_id":"-147"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-505","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"market_performance_CN_CONBOND","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"2019-06-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-06-30","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-505"},{"name":"features","node_id":"-505"}],"output_ports":[{"name":"data","node_id":"-505"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-327","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"market_performance_CN_CONBOND","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"2021-05-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-06-30","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-327"},{"name":"features","node_id":"-327"}],"output_ports":[{"name":"data","node_id":"-327"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-758","module_id":"BigQuantSpace.trade_data_generation.trade_data_generation-v1","parameters":[{"name":"category","value":"CN_STOCK","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input","node_id":"-758"}],"output_ports":[{"name":"history_data","node_id":"-758"},{"name":"instrument_list","node_id":"-758"},{"name":"calendar","node_id":"-758"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-1415","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = DataSource(\"bar1d_CN_CONBOND\").read(start_date=\"2020-06-30\", end_date=\"2021-06-30\")\n df = df.drop(['close'],axis = 1)\n data_1 = DataSource.write_df(df)\n data_2 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-1415"},{"name":"input_2","node_id":"-1415"},{"name":"input_3","node_id":"-1415"}],"output_ports":[{"name":"data_1","node_id":"-1415"},{"name":"data_2","node_id":"-1415"},{"name":"data_3","node_id":"-1415"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-1481","module_id":"BigQuantSpace.hftrade.hftrade-v2","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n print(context.options)\n # 加载预测数据\n context.ranker_prediction = context.options.get('data').read()['data']\n print(context.ranker_prediction)\n context.param = context.options['data'].read()[\"param\"]\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = context.param[\"stock_count\"]\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.4\n context.hold_days = context.param[\"hold_days\"]\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 交易引擎:每个单位时间开盘前调用一次。\ndef bigquant_run(context, data):\n # 盘前处理,订阅行情等\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_tick","value":"# 交易引擎:tick数据处理函数,每个tick执行一次\ndef bigquant_run(context, tick):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n print('处理data',data)\n context.ranker_prediction = context.options.get('data').read()['data']\n # 相隔几天(hold_days)进行一下换仓\n if context.trading_day_index % context.hold_days != 0:\n return \n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n # 目前持仓\n positions = {e: p.amount * p.last_sale_price for e, p in context.portfolio.positions.items()}\n # 权重\n buy_cash_weights = context.stock_weights\n # 今日买入股票列表\n stock_to_buy = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n # 持仓上限\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = [equity for equity in context.portfolio.positions ]\n # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有\n no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]\n # 需要卖出的股票\n stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]\n \n # 卖出\n for stock in stock_to_sell:\n # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态\n # 如果返回真值,则可以正常下单,否则会出错\n # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式\n if data.can_trade(context.symbol(stock)):\n # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,\n # 即卖出全部股票,可参考回测文档\n context.order_target_percent(context.symbol(stock), 0)\n \n # 如果当天没有买入的股票,就返回\n if len(stock_to_buy) == 0:\n return\n \n # 买入\n for i, instrument in enumerate(stock_to_buy):\n cash = context.portfolio.portfolio_value * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)","type":"Literal","bound_global_parameter":null},{"name":"handle_trade","value":"# 交易引擎:成交回报处理函数,每个成交发生时执行一次\ndef bigquant_run(context, trade):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_order","value":"# 交易引擎:委托回报处理函数,每个委托变化时执行一次\ndef bigquant_run(context, order):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"after_trading","value":"# 交易引擎:盘后处理函数,每日盘后执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"可转债","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"8","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"disable_cache","value":"False","type":"Literal","bound_global_parameter":null},{"name":"replay_bdb","value":"False","type":"Literal","bound_global_parameter":null},{"name":"show_debug_info","value":"False","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1481"},{"name":"options_data","node_id":"-1481"},{"name":"history_ds","node_id":"-1481"},{"name":"benchmark_ds","node_id":"-1481"}],"output_ports":[{"name":"raw_perf","node_id":"-1481"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-206","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-206"},{"name":"data2","node_id":"-206"}],"output_ports":[{"name":"data","node_id":"-206"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-228","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"def del_input(input):\n df = input.read_df()\n df = df.drop([\"trigger_cond_item_desc\",'revise_item_desc','trigger_item_desc'],axis=1)\n df = df.dropna(axis=0, how='all', thresh=None, subset=None, inplace=False)\n print(df.columns)\n #df.sort_values(by=['date','double_low'],axis=0,ascending=True,inplace = True)\n df = df.sort_index(axis = 1)\n df = df.reset_index(drop = True)\n df = df.groupby('date').head(10)\n #print(df[['double_low','date']])\n data_1 = DataSource.write_df(df)\n return data_1\n# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n data_1 = del_input(input_1)\n data_2 = del_input(input_2)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-228"},{"name":"input_2","node_id":"-228"},{"name":"input_3","node_id":"-228"}],"output_ports":[{"name":"data_1","node_id":"-228"},{"name":"data_2","node_id":"-228"},{"name":"data_3","node_id":"-228"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-249","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-249"},{"name":"data2","node_id":"-249"}],"output_ports":[{"name":"data","node_id":"-249"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-259","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n #print(df.columns)\n #df = df1[['date','instrument','close','label']]\n #df = df.drop([\"trigger_cond_item_desc\",'revise_item_desc','trigger_item_desc'],axis=1)\n df = df.dropna(axis=0, how='all', thresh=None, subset=None, inplace=False)\n print(df.columns)\n df.sort_values(by=['date','double_low'],axis=0,ascending=True,inplace = True)\n df = df.sort_index(axis = 1)\n df = df.reset_index(drop = True)\n df = df.groupby('date').head(10)\n #print(df[['double_low','date']])\n data_1 = DataSource.write_df(df)\n data_2 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-259"},{"name":"input_2","node_id":"-259"},{"name":"input_3","node_id":"-259"}],"output_ports":[{"name":"data_1","node_id":"-259"},{"name":"data_2","node_id":"-259"},{"name":"data_3","node_id":"-259"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-109","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read()\n param = input_2.read()\n \n data = {\n \"param\": param,\n \"data\": df\n }\n data_1 = DataSource.write_pickle(data)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-109"},{"name":"input_2","node_id":"-109"},{"name":"input_3","node_id":"-109"}],"output_ports":[{"name":"data_1","node_id":"-109"},{"name":"data_2","node_id":"-109"},{"name":"data_3","node_id":"-109"}],"cacheable":true,"seq_num":11,"comment":"合并数据和Trade参数","comment_collapsed":true},{"node_id":"-121","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3, stock_count, hold_days):\n # 示例代码如下。在这里编写您的代码\n param = {\n \"stock_count\": stock_count,\n \"hold_days\": hold_days\n }\n data_1 = DataSource.write_pickle(param)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\n \"stock_count\": 3,\n \"hold_days\": 4 \n}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-121"},{"name":"input_2","node_id":"-121"},{"name":"input_3","node_id":"-121"}],"output_ports":[{"name":"data_1","node_id":"-121"},{"name":"data_2","node_id":"-121"},{"name":"data_3","node_id":"-121"}],"cacheable":true,"seq_num":14,"comment":"暴露Trade的参数","comment_collapsed":true},{"node_id":"-16105","module_id":"BigQuantSpace.hyper_parameter_search.hyper_parameter_search-v1","parameters":[{"name":"param_grid_builder","value":"def bigquant_run():\n import itertools\n param_grid = {}\n \n period_list = [5,120] \n \n # 在这里设置需要调优的参数备选\n feature_list = [\n '''\n double_low = close + bond_prem_ratio\n remain_size\n rank_swing_volatility_5 = nanstd((high-low)/pre_close, {0})*sqrt(200)*100\n '''.format(period) for period in period_list\n ]\n param_grid[\"m14.params\"] = [\n \"\"\"{\"stock_count\": 3, \"hold_days\": 3}\"\"\",\n \"\"\"{\"stock_count\": 4, \"hold_days\": 4}\"\"\",\n ]\n param_grid['m3.features'] = feature_list\n return param_grid","type":"Literal","bound_global_parameter":null},{"name":"scoring","value":"def bigquant_run(result):\n # 评分:收益/最大回撤\n score = result.get('m21').read_raw_perf()['sharpe'].tail(1)[0]\n return {'score': score}\n","type":"Literal","bound_global_parameter":null},{"name":"search_algorithm","value":"网格搜索","type":"Literal","bound_global_parameter":null},{"name":"search_iterations","value":10,"type":"Literal","bound_global_parameter":null},{"name":"random_state","value":"","type":"Literal","bound_global_parameter":null},{"name":"workers","value":1,"type":"Literal","bound_global_parameter":null},{"name":"worker_distributed_run","value":"False","type":"Literal","bound_global_parameter":null},{"name":"worker_silent","value":"False","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-16105"},{"name":"input_1","node_id":"-16105"},{"name":"input_2","node_id":"-16105"},{"name":"input_3","node_id":"-16105"}],"output_ports":[{"name":"result","node_id":"-16105"}],"cacheable":false,"seq_num":9,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='807,-316,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='558,575,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='907,638,200,200'/><node_position Node='-281' Position='369,140,200,200'/><node_position Node='-295' Position='941,147,200,200'/><node_position Node='-129' Position='-5,156,200,200'/><node_position Node='-147' Position='69,-161,200,200'/><node_position Node='-505' Position='491,-312,200,200'/><node_position Node='-327' Position='1175,-290,200,200'/><node_position Node='-758' Position='1373,160,200,200'/><node_position Node='-1415' Position='1442,-220,200,200'/><node_position Node='-1481' Position='1024,791,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='117,385,200,200'/><node_position Node='-206' Position='177,46,200,200'/><node_position Node='-228' Position='451,-173,200,200'/><node_position Node='-249' Position='1121,-57,200,200'/><node_position Node='-259' Position='911,394,200,200'/><node_position Node='-109' Position='1269,643,200,200'/><node_position Node='-121' Position='1577,522,200,200'/><node_position Node='-16105' Position='116,574,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [2]:
    # 本代码由可视化策略环境自动生成 2022年5月30日 09:02
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m2_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        df = DataSource("bar1d_CN_CONBOND").read(start_date="2017-06-01", end_date="2020-06-30")
        df2 = df.drop(['close'],axis = 1)
        data_1 = DataSource.write_df(df)
        data_2 = DataSource.write_df(df2)
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m2_post_run_bigquant_run(outputs):
        return outputs
    
    def del_input(input):
        df = input.read_df()
        df = df.drop(["trigger_cond_item_desc",'revise_item_desc','trigger_item_desc'],axis=1)
        df = df.dropna(axis=0, how='all', thresh=None, subset=None, inplace=False)
        print(df.columns)
        #df.sort_values(by=['date','double_low'],axis=0,ascending=True,inplace = True)
        df = df.sort_index(axis = 1)
        df = df.reset_index(drop = True)
        df = df.groupby('date').head(10)
        #print(df[['double_low','date']])
        data_1 = DataSource.write_df(df)
        return data_1
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m23_run_bigquant_run(input_1, input_2, input_3):
        data_1 = del_input(input_1)
        data_2 = del_input(input_2)
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m23_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m15_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        df = DataSource("bar1d_CN_CONBOND").read(start_date="2020-06-30", end_date="2021-06-30")
        df = df.drop(['close'],axis = 1)
        data_1 = DataSource.write_df(df)
        data_2 = DataSource.write_pickle(df)
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m15_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m13_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        df = input_1.read_df()
        #print(df.columns)
        #df = df1[['date','instrument','close','label']]
        #df = df.drop(["trigger_cond_item_desc",'revise_item_desc','trigger_item_desc'],axis=1)
        df = df.dropna(axis=0, how='all', thresh=None, subset=None, inplace=False)
        print(df.columns)
        df.sort_values(by=['date','double_low'],axis=0,ascending=True,inplace = True)
        df = df.sort_index(axis = 1)
        df = df.reset_index(drop = True)
        df = df.groupby('date').head(10)
        #print(df[['double_low','date']])
        data_1 = DataSource.write_df(df)
        data_2 = DataSource.write_pickle(df)
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m13_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m14_run_bigquant_run(input_1, input_2, input_3, stock_count, hold_days):
        # 示例代码如下。在这里编写您的代码
        param = {
            "stock_count": stock_count,
            "hold_days": hold_days
            }
        data_1 = DataSource.write_pickle(param)
        return Outputs(data_1=data_1, data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m14_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m11_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        df = input_1.read()
        param = input_2.read()
        
        data = {
            "param": param,
            "data": df
        }
        data_1 = DataSource.write_pickle(data)
        return Outputs(data_1=data_1, data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m11_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m21_initialize_bigquant_run(context):
        print(context.options)
        # 加载预测数据
        context.ranker_prediction = context.options.get('data').read()['data']
        print(context.ranker_prediction)
        context.param = context.options['data'].read()["param"]
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = context.param["stock_count"]
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.4
        context.hold_days = context.param["hold_days"]
    
    # 交易引擎:每个单位时间开盘前调用一次。
    def m21_before_trading_start_bigquant_run(context, data):
        # 盘前处理,订阅行情等
        pass
    
    # 交易引擎:tick数据处理函数,每个tick执行一次
    def m21_handle_tick_bigquant_run(context, tick):
        pass
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m21_handle_data_bigquant_run(context, data):
        print('处理data',data)
        context.ranker_prediction = context.options.get('data').read()['data']
        # 相隔几天(hold_days)进行一下换仓
        if context.trading_day_index % context.hold_days != 0:
            return 
        
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
        # 目前持仓
        positions = {e: p.amount * p.last_sale_price for e, p in context.portfolio.positions.items()}
        # 权重
        buy_cash_weights = context.stock_weights
        # 今日买入股票列表
        stock_to_buy = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        # 持仓上限
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
    
        # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
        stock_hold_now = [equity for equity in context.portfolio.positions ]
        # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有
        no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]
        # 需要卖出的股票
        stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]
      
        # 卖出
        for stock in stock_to_sell:
            # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态
            # 如果返回真值,则可以正常下单,否则会出错
            # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式
            if data.can_trade(context.symbol(stock)):
                # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,
                #   即卖出全部股票,可参考回测文档
                context.order_target_percent(context.symbol(stock), 0)
        
        # 如果当天没有买入的股票,就返回
        if len(stock_to_buy) == 0:
            return
        
        # 买入
        for i, instrument in enumerate(stock_to_buy):
            cash = context.portfolio.portfolio_value * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    # 交易引擎:成交回报处理函数,每个成交发生时执行一次
    def m21_handle_trade_bigquant_run(context, trade):
        pass
    
    # 交易引擎:委托回报处理函数,每个委托变化时执行一次
    def m21_handle_order_bigquant_run(context, order):
        pass
    
    # 交易引擎:盘后处理函数,每日盘后执行一次
    def m21_after_trading_bigquant_run(context, data):
        pass
    
    
    g = T.Graph({
    
        'm3': 'M.input_features.v1',
        'm3.features': """# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    double_low = close + bond_prem_ratio
    remain_size
    rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100""",
    
        'm2': 'M.cached.v3',
        'm2.run': m2_run_bigquant_run,
        'm2.post_run': m2_post_run_bigquant_run,
        'm2.input_ports': '',
        'm2.params': '{}',
        'm2.output_ports': '',
    
        'm10': 'M.auto_labeler_on_datasource.v1',
        'm10.input_data': T.Graph.OutputPort('m2.data_1'),
        'm10.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 10)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        'm10.drop_na_label': True,
        'm10.cast_label_int': True,
        'm10.date_col': 'date',
        'm10.instrument_col': 'instrument',
        'm10.user_functions': {},
    
        'm1': 'M.use_datasource.v1',
        'm1.datasource_id': 'market_performance_CN_CONBOND',
        'm1.start_date': '2019-06-01',
        'm1.end_date': '2020-06-30',
    
        'm5': 'M.use_datasource.v1',
        'm5.datasource_id': 'market_performance_CN_CONBOND',
        'm5.start_date': '2021-05-01',
        'm5.end_date': '2021-06-30',
    
        'm12': 'M.trade_data_generation.v1',
        'm12.input': T.Graph.OutputPort('m5.data'),
        'm12.category': 'CN_STOCK',
        'm12.m_cached': False,
    
        'm23': 'M.cached.v3',
        'm23.input_1': T.Graph.OutputPort('m1.data'),
        'm23.input_2': T.Graph.OutputPort('m5.data'),
        'm23.run': m23_run_bigquant_run,
        'm23.post_run': m23_post_run_bigquant_run,
        'm23.input_ports': '',
        'm23.params': '{}',
        'm23.output_ports': '',
        'm23.m_cached': False,
    
        'm4': 'M.join.v3',
        'm4.data1': T.Graph.OutputPort('m2.data_2'),
        'm4.data2': T.Graph.OutputPort('m23.data_1'),
        'm4.on': 'date,instrument',
        'm4.how': 'inner',
        'm4.sort': False,
    
        'm16': 'M.derived_feature_extractor.v3',
        'm16.input_data': T.Graph.OutputPort('m4.data'),
        'm16.features': T.Graph.OutputPort('m3.data'),
        'm16.date_col': 'date',
        'm16.instrument_col': 'instrument',
        'm16.drop_na': False,
        'm16.remove_extra_columns': False,
    
        'm7': 'M.join.v3',
        'm7.data1': T.Graph.OutputPort('m10.data'),
        'm7.data2': T.Graph.OutputPort('m16.data'),
        'm7.on': 'date,instrument',
        'm7.how': 'inner',
        'm7.sort': False,
    
        'm6': 'M.stock_ranker_train.v6',
        'm6.training_ds': T.Graph.OutputPort('m7.data'),
        'm6.features': T.Graph.OutputPort('m3.data'),
        'm6.learning_algorithm': '排序',
        'm6.number_of_leaves': 3,
        'm6.minimum_docs_per_leaf': 100,
        'm6.number_of_trees': 2,
        'm6.learning_rate': 0.1,
        'm6.max_bins': 1023,
        'm6.feature_fraction': 1,
        'm6.data_row_fraction': 1,
        'm6.plot_charts': True,
        'm6.ndcg_discount_base': 1,
        'm6.m_lazy_run': False,
        'm6.m_cached': False,
    
        'm15': 'M.cached.v3',
        'm15.run': m15_run_bigquant_run,
        'm15.post_run': m15_post_run_bigquant_run,
        'm15.input_ports': '',
        'm15.params': '{}',
        'm15.output_ports': '',
    
        'm25': 'M.join.v3',
        'm25.data1': T.Graph.OutputPort('m23.data_2'),
        'm25.data2': T.Graph.OutputPort('m15.data_1'),
        'm25.on': 'date,instrument',
        'm25.how': 'inner',
        'm25.sort': False,
    
        'm18': 'M.derived_feature_extractor.v3',
        'm18.input_data': T.Graph.OutputPort('m25.data'),
        'm18.features': T.Graph.OutputPort('m3.data'),
        'm18.date_col': 'date',
        'm18.instrument_col': 'instrument',
        'm18.drop_na': False,
        'm18.remove_extra_columns': False,
    
        'm13': 'M.cached.v3',
        'm13.input_1': T.Graph.OutputPort('m18.data'),
        'm13.run': m13_run_bigquant_run,
        'm13.post_run': m13_post_run_bigquant_run,
        'm13.input_ports': '',
        'm13.params': '{}',
        'm13.output_ports': '',
        'm13.m_cached': False,
    
        'm8': 'M.stock_ranker_predict.v5',
        'm8.model': T.Graph.OutputPort('m6.model'),
        'm8.data': T.Graph.OutputPort('m13.data_1'),
        'm8.m_lazy_run': False,
    
        'm14': 'M.cached.v3',
        'm14.run': m14_run_bigquant_run,
        'm14.post_run': m14_post_run_bigquant_run,
        'm14.input_ports': '',
        'm14.params': """{
        "stock_count": 3,
        "hold_days": 4 
    }""",
        'm14.output_ports': '',
    
        'm11': 'M.cached.v3',
        'm11.input_1': T.Graph.OutputPort('m8.predictions'),
        'm11.input_2': T.Graph.OutputPort('m14.data_1'),
        'm11.run': m11_run_bigquant_run,
        'm11.post_run': m11_post_run_bigquant_run,
        'm11.input_ports': '',
        'm11.params': '{}',
        'm11.output_ports': '',
    
        'm21': 'M.hftrade.v2',
        'm21.instruments': T.Graph.OutputPort('m12.instrument_list'),
        'm21.options_data': T.Graph.OutputPort('m11.data_1'),
        'm21.start_date': '',
        'm21.end_date': '',
        'm21.initialize': m21_initialize_bigquant_run,
        'm21.before_trading_start': m21_before_trading_start_bigquant_run,
        'm21.handle_tick': m21_handle_tick_bigquant_run,
        'm21.handle_data': m21_handle_data_bigquant_run,
        'm21.handle_trade': m21_handle_trade_bigquant_run,
        'm21.handle_order': m21_handle_order_bigquant_run,
        'm21.after_trading': m21_after_trading_bigquant_run,
        'm21.capital_base': 1000000,
        'm21.frequency': 'daily',
        'm21.price_type': '真实价格',
        'm21.product_type': '可转债',
        'm21.before_start_days': '8',
        'm21.order_price_field_buy': 'open',
        'm21.order_price_field_sell': 'close',
        'm21.benchmark': '000300.HIX',
        'm21.plot_charts': True,
        'm21.disable_cache': False,
        'm21.replay_bdb': False,
        'm21.show_debug_info': False,
        'm21.backtest_only': False,
    })
    
    # g.run({})
    
    
    def m9_param_grid_builder_bigquant_run():
        import itertools
        param_grid = {}
        
        period_list = [5,120] 
        
        # 在这里设置需要调优的参数备选
        feature_list = [
        '''
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, {0})*sqrt(200)*100
        '''.format(period) for period in period_list
        ]
        param_grid["m14.params"] = [
            """{"stock_count": 3, "hold_days": 3}""",
            """{"stock_count": 4, "hold_days": 4}""",
        ]
        param_grid['m3.features'] = feature_list
        return param_grid
    def m9_scoring_bigquant_run(result):
        # 评分:收益/最大回撤
        score = result.get('m21').read_raw_perf()['sharpe'].tail(1)[0]
        return {'score': score}
    
    
    m9 = M.hyper_parameter_search.v1(
        param_grid_builder=m9_param_grid_builder_bigquant_run,
        scoring=m9_scoring_bigquant_run,
        search_algorithm='网格搜索',
        search_iterations=10,
        workers=1,
        worker_distributed_run=False,
        worker_silent=False,
        run_now=True,
        bq_graph=g
    )
    
    Fitting 1 folds for each of 4 candidates, totalling 4 fits
    [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
    [CV 1/1; 1/4] START m14.params={"stock_count": 3, "hold_days": 3}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100
        
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-ed406b1d8a594a99af8002c574119959"}/bigcharts-data-end
    {'data': DataSource(7a989652ccb74dbca7694ab017189a6cT)}
              date  instrument     score  position
    0   2021-05-06  123096.ZCB  0.104772         1
    1   2021-05-06  123084.ZCB  0.104772         2
    2   2021-05-06  123050.ZCB  0.104772         3
    3   2021-05-06  113530.HCB  0.104772         4
    4   2021-05-06  113033.HCB  0.104199         5
    ..         ...         ...       ...       ...
    385 2021-06-30  128143.ZCB -0.070900         6
    386 2021-06-30  127021.ZCB -0.070900         7
    387 2021-06-30  128141.ZCB -0.084736         8
    388 2021-06-30  123042.ZCB -0.372995         9
    389 2021-06-30  123043.ZCB -0.372995        10
    
    [390 rows x 4 columns]
    处理data BarDatas(current_dt:2021-05-06 15:00:00)
    处理data BarDatas(current_dt:2021-05-07 15:00:00)
    处理data BarDatas(current_dt:2021-05-10 15:00:00)
    处理data BarDatas(current_dt:2021-05-11 15:00:00)
    2022-05-30 16:56:54.091438 market open send order=OrderReq(bkt000,128096.ZCB,'1','0',0,124.956,U,0,strategy,2021-05-11 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:56:54.092452 market open send order=OrderReq(bkt000,123059.ZCB,'1','0',0,101.0,U,0,strategy,2021-05-11 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-12 15:00:00)
    处理data BarDatas(current_dt:2021-05-13 15:00:00)
    处理data BarDatas(current_dt:2021-05-14 15:00:00)
    处理data BarDatas(current_dt:2021-05-17 15:00:00)
    处理data BarDatas(current_dt:2021-05-18 15:00:00)
    处理data BarDatas(current_dt:2021-05-19 15:00:00)
    2022-05-30 16:56:54.255806 market open send order=OrderReq(bkt000,113600.HCB,'1','0',0,94.47,U,0,strategy,2021-05-19 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:56:54.256485 market open send order=OrderReq(bkt000,128123.ZCB,'1','0',0,104.1999,U,0,strategy,2021-05-19 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-20 15:00:00)
    处理data BarDatas(current_dt:2021-05-21 15:00:00)
    处理data BarDatas(current_dt:2021-05-24 15:00:00)
    处理data BarDatas(current_dt:2021-05-25 15:00:00)
    处理data BarDatas(current_dt:2021-05-26 15:00:00)
    处理data BarDatas(current_dt:2021-05-27 15:00:00)
    2022-05-30 16:56:54.405081 market open send order=OrderReq(bkt000,128097.ZCB,'1','0',0,173.388,U,0,strategy,2021-05-27 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:56:54.405638 market open send order=OrderReq(bkt000,128095.ZCB,'1','0',0,231.1999,U,0,strategy,2021-05-27 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-28 15:00:00)
    处理data BarDatas(current_dt:2021-05-31 15:00:00)
    处理data BarDatas(current_dt:2021-06-01 15:00:00)
    处理data BarDatas(current_dt:2021-06-02 15:00:00)
    处理data BarDatas(current_dt:2021-06-03 15:00:00)
    处理data BarDatas(current_dt:2021-06-04 15:00:00)
    2022-05-30 16:56:54.573504 market open send order=OrderReq(bkt000,113593.HCB,'1','0',0,107.8799,U,0,strategy,2021-06-04 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:56:54.574173 market open send order=OrderReq(bkt000,110055.HCB,'1','0',0,209.0399,U,0,strategy,2021-06-04 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-07 15:00:00)
    处理data BarDatas(current_dt:2021-06-08 15:00:00)
    处理data BarDatas(current_dt:2021-06-09 15:00:00)
    处理data BarDatas(current_dt:2021-06-10 15:00:00)
    处理data BarDatas(current_dt:2021-06-11 15:00:00)
    处理data BarDatas(current_dt:2021-06-15 15:00:00)
    2022-05-30 16:56:54.730812 market open send order=OrderReq(bkt000,128106.ZCB,'1','0',0,110.3499,U,0,strategy,2021-06-15 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:56:54.731387 market open send order=OrderReq(bkt000,113588.HCB,'1','0',0,106.8199,U,0,strategy,2021-06-15 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-16 15:00:00)
    处理data BarDatas(current_dt:2021-06-17 15:00:00)
    处理data BarDatas(current_dt:2021-06-18 15:00:00)
    处理data BarDatas(current_dt:2021-06-21 15:00:00)
    处理data BarDatas(current_dt:2021-06-22 15:00:00)
    处理data BarDatas(current_dt:2021-06-23 15:00:00)
    2022-05-30 16:56:54.883123 market open send order=OrderReq(bkt000,110065.HCB,'1','0',0,132.96,U,0,strategy,2021-06-23 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:56:54.883532 market open send order=OrderReq(bkt000,113598.HCB,'1','0',0,109.9199,U,0,strategy,2021-06-23 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-24 15:00:00)
    处理data BarDatas(current_dt:2021-06-25 15:00:00)
    处理data BarDatas(current_dt:2021-06-28 15:00:00)
    处理data BarDatas(current_dt:2021-06-29 15:00:00)
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    
    • 收益率3.04%
    • 年化收益率20.41%
    • 基准收益率3.22%
    • 阿尔法0.18
    • 贝塔0.03
    • 夏普比率1.89
    • 胜率0.58
    • 盈亏比3.26
    • 收益波动率8.88%
    • 信息比率0.02
    • 最大回撤2.2%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-f627b4dbfa0c494ba4ab895b87a685b9"}/bigcharts-data-end
    [CV 1/1; 1/4] END m14.params={"stock_count": 3, "hold_days": 3}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100
        ; score: (test=1.890) total time= 1.3min
    [Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:  1.3min remaining:    0.0s
    [CV 1/1; 2/4] START m14.params={"stock_count": 3, "hold_days": 3}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 120)*sqrt(200)*100
        
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-2c05e806b7d540149fa5fbd382811016"}/bigcharts-data-end
    {'data': DataSource(88a9497f1b9b42fcac015bc13286729aT)}
              date  instrument     score  position
    0   2021-05-06  113013.HCB  0.236329         1
    1   2021-05-06  113033.HCB  0.079207         2
    2   2021-05-06  123096.ZCB  0.079207         3
    3   2021-05-06  128119.ZCB  0.079207         4
    4   2021-05-06  123084.ZCB  0.079207         5
    ..         ...         ...       ...       ...
    385 2021-06-30  123113.ZCB  0.079207         6
    386 2021-06-30  123043.ZCB  0.079207         7
    387 2021-06-30  127021.ZCB -0.027755         8
    388 2021-06-30  128141.ZCB -0.295625         9
    389 2021-06-30  123042.ZCB -0.362367        10
    
    [390 rows x 4 columns]
    处理data BarDatas(current_dt:2021-05-06 15:00:00)
    处理data BarDatas(current_dt:2021-05-07 15:00:00)
    处理data BarDatas(current_dt:2021-05-10 15:00:00)
    处理data BarDatas(current_dt:2021-05-11 15:00:00)
    2022-05-30 16:58:14.230324 market open send order=OrderReq(bkt000,128120.ZCB,'1','0',0,103.0039,U,0,strategy,2021-05-11 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:58:14.231109 market open send order=OrderReq(bkt000,128096.ZCB,'1','0',0,124.956,U,0,strategy,2021-05-11 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-12 15:00:00)
    处理data BarDatas(current_dt:2021-05-13 15:00:00)
    处理data BarDatas(current_dt:2021-05-14 15:00:00)
    处理data BarDatas(current_dt:2021-05-17 15:00:00)
    处理data BarDatas(current_dt:2021-05-18 15:00:00)
    处理data BarDatas(current_dt:2021-05-19 15:00:00)
    2022-05-30 16:58:14.365400 market open send order=OrderReq(bkt000,113013.HCB,'1','0',0,114.66,U,0,strategy,2021-05-19 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:58:14.365768 market open send order=OrderReq(bkt000,128013.ZCB,'1','0',0,105.415,U,0,strategy,2021-05-19 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-20 15:00:00)
    处理data BarDatas(current_dt:2021-05-21 15:00:00)
    处理data BarDatas(current_dt:2021-05-24 15:00:00)
    处理data BarDatas(current_dt:2021-05-25 15:00:00)
    处理data BarDatas(current_dt:2021-05-26 15:00:00)
    处理data BarDatas(current_dt:2021-05-27 15:00:00)
    2022-05-30 16:58:14.500288 market open send order=OrderReq(bkt000,123085.ZCB,'1','0',0,97.4649,U,0,strategy,2021-05-27 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:58:14.500676 market open send order=OrderReq(bkt000,110034.HCB,'1','0',0,109.9899,U,0,strategy,2021-05-27 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-28 15:00:00)
    处理data BarDatas(current_dt:2021-05-31 15:00:00)
    处理data BarDatas(current_dt:2021-06-01 15:00:00)
    处理data BarDatas(current_dt:2021-06-02 15:00:00)
    处理data BarDatas(current_dt:2021-06-03 15:00:00)
    处理data BarDatas(current_dt:2021-06-04 15:00:00)
    2022-05-30 16:58:14.631682 market open send order=OrderReq(bkt000,113043.HCB,'1','0',0,108.98,U,0,strategy,2021-06-04 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:58:14.632018 market open send order=OrderReq(bkt000,123073.ZCB,'1','0',0,121.772,U,0,strategy,2021-06-04 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-07 15:00:00)
    处理data BarDatas(current_dt:2021-06-08 15:00:00)
    处理data BarDatas(current_dt:2021-06-09 15:00:00)
    处理data BarDatas(current_dt:2021-06-10 15:00:00)
    处理data BarDatas(current_dt:2021-06-11 15:00:00)
    处理data BarDatas(current_dt:2021-06-15 15:00:00)
    2022-05-30 16:58:14.770168 market open send order=OrderReq(bkt000,113610.HCB,'1','0',0,103.9899,U,0,strategy,2021-06-15 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:58:14.770537 market open send order=OrderReq(bkt000,128106.ZCB,'1','0',0,110.3499,U,0,strategy,2021-06-15 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-16 15:00:00)
    处理data BarDatas(current_dt:2021-06-17 15:00:00)
    处理data BarDatas(current_dt:2021-06-18 15:00:00)
    处理data BarDatas(current_dt:2021-06-21 15:00:00)
    处理data BarDatas(current_dt:2021-06-22 15:00:00)
    处理data BarDatas(current_dt:2021-06-23 15:00:00)
    2022-05-30 16:58:14.907513 market open send order=OrderReq(bkt000,110065.HCB,'1','0',0,132.96,U,0,strategy,2021-06-23 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:58:14.907857 market open send order=OrderReq(bkt000,113598.HCB,'1','0',0,109.9199,U,0,strategy,2021-06-23 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-24 15:00:00)
    处理data BarDatas(current_dt:2021-06-25 15:00:00)
    处理data BarDatas(current_dt:2021-06-28 15:00:00)
    处理data BarDatas(current_dt:2021-06-29 15:00:00)
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    
    • 收益率9.67%
    • 年化收益率77.36%
    • 基准收益率3.22%
    • 阿尔法0.83
    • 贝塔-0.21
    • 夏普比率3.3
    • 胜率0.62
    • 盈亏比9.36
    • 收益波动率17.64%
    • 信息比率0.12
    • 最大回撤0.66%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-74cf6d69bd954e2e94e9aa8e84a4c124"}/bigcharts-data-end
    [CV 1/1; 2/4] END m14.params={"stock_count": 3, "hold_days": 3}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 120)*sqrt(200)*100
        ; score: (test=3.302) total time= 1.3min
    [Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:  2.7min remaining:    0.0s
    [CV 1/1; 3/4] START m14.params={"stock_count": 4, "hold_days": 4}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100
        
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-7f7d83177bda4b30a6ed48af05ad9f5c"}/bigcharts-data-end
    {'data': DataSource(479d6093d2594a818605e6068beef944T)}
              date  instrument     score  position
    0   2021-05-06  123096.ZCB  0.104772         1
    1   2021-05-06  123084.ZCB  0.104772         2
    2   2021-05-06  123050.ZCB  0.104772         3
    3   2021-05-06  113530.HCB  0.104772         4
    4   2021-05-06  113033.HCB  0.104199         5
    ..         ...         ...       ...       ...
    385 2021-06-30  128143.ZCB -0.070900         6
    386 2021-06-30  127021.ZCB -0.070900         7
    387 2021-06-30  128141.ZCB -0.084736         8
    388 2021-06-30  123042.ZCB -0.372995         9
    389 2021-06-30  123043.ZCB -0.372995        10
    
    [390 rows x 4 columns]
    处理data BarDatas(current_dt:2021-05-06 15:00:00)
    处理data BarDatas(current_dt:2021-05-07 15:00:00)
    处理data BarDatas(current_dt:2021-05-10 15:00:00)
    处理data BarDatas(current_dt:2021-05-11 15:00:00)
    处理data BarDatas(current_dt:2021-05-12 15:00:00)
    2022-05-30 16:59:44.901580 market open send order=OrderReq(bkt000,123100.ZCB,'1','0',0,112.0,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:44.901918 market open send order=OrderReq(bkt000,123068.ZCB,'1','0',0,104.7968,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:44.902207 market open send order=OrderReq(bkt000,128033.ZCB,'1','0',0,146.5,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:44.902499 market open send order=OrderReq(bkt000,128013.ZCB,'1','0',0,105.3359,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-13 15:00:00)
    处理data BarDatas(current_dt:2021-05-14 15:00:00)
    处理data BarDatas(current_dt:2021-05-17 15:00:00)
    处理data BarDatas(current_dt:2021-05-18 15:00:00)
    处理data BarDatas(current_dt:2021-05-19 15:00:00)
    处理data BarDatas(current_dt:2021-05-20 15:00:00)
    处理data BarDatas(current_dt:2021-05-21 15:00:00)
    处理data BarDatas(current_dt:2021-05-24 15:00:00)
    2022-05-30 16:59:45.069577 market open send order=OrderReq(bkt000,128106.ZCB,'1','0',0,112.022,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:45.069947 market open send order=OrderReq(bkt000,128082.ZCB,'1','0',0,122.0,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:45.070237 market open send order=OrderReq(bkt000,123007.ZCB,'1','0',0,108.3,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:45.070538 market open send order=OrderReq(bkt000,123105.ZCB,'1','0',0,102.0199,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-25 15:00:00)
    处理data BarDatas(current_dt:2021-05-26 15:00:00)
    处理data BarDatas(current_dt:2021-05-27 15:00:00)
    处理data BarDatas(current_dt:2021-05-28 15:00:00)
    处理data BarDatas(current_dt:2021-05-31 15:00:00)
    处理data BarDatas(current_dt:2021-06-01 15:00:00)
    处理data BarDatas(current_dt:2021-06-02 15:00:00)
    处理data BarDatas(current_dt:2021-06-03 15:00:00)
    2022-05-30 16:59:45.280712 market open send order=OrderReq(bkt000,113568.HCB,'1','0',0,109.5299,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:45.281083 market open send order=OrderReq(bkt000,113604.HCB,'1','0',0,110.1699,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:45.281679 market open send order=OrderReq(bkt000,123056.ZCB,'1','0',0,103.51,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:45.281982 market open send order=OrderReq(bkt000,128025.ZCB,'1','0',0,127.3639,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-04 15:00:00)
    处理data BarDatas(current_dt:2021-06-07 15:00:00)
    处理data BarDatas(current_dt:2021-06-08 15:00:00)
    处理data BarDatas(current_dt:2021-06-09 15:00:00)
    处理data BarDatas(current_dt:2021-06-10 15:00:00)
    处理data BarDatas(current_dt:2021-06-11 15:00:00)
    处理data BarDatas(current_dt:2021-06-15 15:00:00)
    处理data BarDatas(current_dt:2021-06-16 15:00:00)
    2022-05-30 16:59:45.483283 market open send order=OrderReq(bkt000,123080.ZCB,'1','0',0,107.0,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:45.483924 market open send order=OrderReq(bkt000,128075.ZCB,'1','0',0,117.315,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:45.484224 market open send order=OrderReq(bkt000,123078.ZCB,'1','0',0,115.273,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:45.484526 market open send order=OrderReq(bkt000,128083.ZCB,'1','0',0,103.1999,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-17 15:00:00)
    处理data BarDatas(current_dt:2021-06-18 15:00:00)
    处理data BarDatas(current_dt:2021-06-21 15:00:00)
    处理data BarDatas(current_dt:2021-06-22 15:00:00)
    处理data BarDatas(current_dt:2021-06-23 15:00:00)
    处理data BarDatas(current_dt:2021-06-24 15:00:00)
    处理data BarDatas(current_dt:2021-06-25 15:00:00)
    处理data BarDatas(current_dt:2021-06-28 15:00:00)
    2022-05-30 16:59:45.656546 market open send order=OrderReq(bkt000,127031.ZCB,'1','0',0,117.3,U,0,strategy,2021-06-28 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 16:59:45.657119 market open send order=OrderReq(bkt000,128135.ZCB,'1','0',0,114.9,U,0,strategy,2021-06-28 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-29 15:00:00)
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    
    • 收益率5.41%
    • 年化收益率38.69%
    • 基准收益率3.22%
    • 阿尔法0.35
    • 贝塔0.12
    • 夏普比率4.43
    • 胜率0.47
    • 盈亏比6.26
    • 收益波动率7.09%
    • 信息比率0.08
    • 最大回撤1.29%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-a69218d2d52b4b4d959af6438b5822a4"}/bigcharts-data-end
    [CV 1/1; 3/4] END m14.params={"stock_count": 4, "hold_days": 4}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100
        ; score: (test=4.426) total time= 1.5min
    [Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:  4.2min remaining:    0.0s
    [CV 1/1; 4/4] START m14.params={"stock_count": 4, "hold_days": 4}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 120)*sqrt(200)*100
        
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-c7ef4cdc5d8f4abba264d29741a3ac24"}/bigcharts-data-end
    {'data': DataSource(7a96e4075297483bbf4a5f9e680c67caT)}
              date  instrument     score  position
    0   2021-05-06  113013.HCB  0.236329         1
    1   2021-05-06  113033.HCB  0.079207         2
    2   2021-05-06  123096.ZCB  0.079207         3
    3   2021-05-06  128119.ZCB  0.079207         4
    4   2021-05-06  123084.ZCB  0.079207         5
    ..         ...         ...       ...       ...
    385 2021-06-30  123113.ZCB  0.079207         6
    386 2021-06-30  123043.ZCB  0.079207         7
    387 2021-06-30  127021.ZCB -0.027755         8
    388 2021-06-30  128141.ZCB -0.295625         9
    389 2021-06-30  123042.ZCB -0.362367        10
    
    [390 rows x 4 columns]
    处理data BarDatas(current_dt:2021-05-06 15:00:00)
    处理data BarDatas(current_dt:2021-05-07 15:00:00)
    处理data BarDatas(current_dt:2021-05-10 15:00:00)
    处理data BarDatas(current_dt:2021-05-11 15:00:00)
    处理data BarDatas(current_dt:2021-05-12 15:00:00)
    2022-05-30 17:01:04.363019 market open send order=OrderReq(bkt000,128013.ZCB,'1','0',0,105.3359,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.363672 market open send order=OrderReq(bkt000,128081.ZCB,'1','0',0,109.857,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.364052 market open send order=OrderReq(bkt000,123100.ZCB,'1','0',0,112.0,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.364436 market open send order=OrderReq(bkt000,123068.ZCB,'1','0',0,104.7968,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-13 15:00:00)
    处理data BarDatas(current_dt:2021-05-14 15:00:00)
    处理data BarDatas(current_dt:2021-05-17 15:00:00)
    处理data BarDatas(current_dt:2021-05-18 15:00:00)
    处理data BarDatas(current_dt:2021-05-19 15:00:00)
    处理data BarDatas(current_dt:2021-05-20 15:00:00)
    处理data BarDatas(current_dt:2021-05-21 15:00:00)
    处理data BarDatas(current_dt:2021-05-24 15:00:00)
    2022-05-30 17:01:04.548068 market open send order=OrderReq(bkt000,128129.ZCB,'1','0',0,108.361,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.548428 market open send order=OrderReq(bkt000,128106.ZCB,'1','0',0,112.022,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.548816 market open send order=OrderReq(bkt000,128082.ZCB,'1','0',0,122.0,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.549097 market open send order=OrderReq(bkt000,123007.ZCB,'1','0',0,108.3,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-25 15:00:00)
    处理data BarDatas(current_dt:2021-05-26 15:00:00)
    处理data BarDatas(current_dt:2021-05-27 15:00:00)
    处理data BarDatas(current_dt:2021-05-28 15:00:00)
    处理data BarDatas(current_dt:2021-05-31 15:00:00)
    处理data BarDatas(current_dt:2021-06-01 15:00:00)
    处理data BarDatas(current_dt:2021-06-02 15:00:00)
    处理data BarDatas(current_dt:2021-06-03 15:00:00)
    2022-05-30 17:01:04.727489 market open send order=OrderReq(bkt000,113568.HCB,'1','0',0,109.5299,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.728114 market open send order=OrderReq(bkt000,113604.HCB,'1','0',0,110.1699,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.728442 market open send order=OrderReq(bkt000,113561.HCB,'1','0',0,110.0299,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.728901 market open send order=OrderReq(bkt000,123056.ZCB,'1','0',0,103.51,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-04 15:00:00)
    处理data BarDatas(current_dt:2021-06-07 15:00:00)
    处理data BarDatas(current_dt:2021-06-08 15:00:00)
    处理data BarDatas(current_dt:2021-06-09 15:00:00)
    处理data BarDatas(current_dt:2021-06-10 15:00:00)
    处理data BarDatas(current_dt:2021-06-11 15:00:00)
    处理data BarDatas(current_dt:2021-06-15 15:00:00)
    处理data BarDatas(current_dt:2021-06-16 15:00:00)
    2022-05-30 17:01:04.916973 market open send order=OrderReq(bkt000,123080.ZCB,'1','0',0,107.0,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.917351 market open send order=OrderReq(bkt000,128081.ZCB,'1','0',0,108.1999,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.917696 market open send order=OrderReq(bkt000,128075.ZCB,'1','0',0,117.315,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:04.918034 market open send order=OrderReq(bkt000,123078.ZCB,'1','0',0,115.273,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-17 15:00:00)
    处理data BarDatas(current_dt:2021-06-18 15:00:00)
    处理data BarDatas(current_dt:2021-06-21 15:00:00)
    处理data BarDatas(current_dt:2021-06-22 15:00:00)
    处理data BarDatas(current_dt:2021-06-23 15:00:00)
    处理data BarDatas(current_dt:2021-06-24 15:00:00)
    处理data BarDatas(current_dt:2021-06-25 15:00:00)
    处理data BarDatas(current_dt:2021-06-28 15:00:00)
    2022-05-30 17:01:05.098326 market open send order=OrderReq(bkt000,123084.ZCB,'1','0',0,109.9,U,0,strategy,2021-06-28 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:05.098819 market open send order=OrderReq(bkt000,123071.ZCB,'1','0',0,116.65,U,0,strategy,2021-06-28 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:01:05.100643 market open send order=OrderReq(bkt000,123073.ZCB,'1','0',0,116.72,U,0,strategy,2021-06-28 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-29 15:00:00)
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    
    • 收益率13.02%
    • 年化收益率113.76%
    • 基准收益率3.22%
    • 阿尔法1.21
    • 贝塔-0.11
    • 夏普比率3.83
    • 胜率0.68
    • 盈亏比16.79
    • 收益波动率20.43%
    • 信息比率0.16
    • 最大回撤1.32%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-98ad20ef0e8049279cd4c426c71e6293"}/bigcharts-data-end
    [CV 1/1; 4/4] END m14.params={"stock_count": 4, "hold_days": 4}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 120)*sqrt(200)*100
        ; score: (test=3.829) total time= 1.3min
    [Parallel(n_jobs=1)]: Done   4 out of   4 | elapsed:  5.5min remaining:    0.0s
    [Parallel(n_jobs=1)]: Done   4 out of   4 | elapsed:  5.5min finished
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-2a01568125744a21aa58f55ab01661f4"}/bigcharts-data-end
    {'data': DataSource(fc3beb3cc2324a5a880b046eee6875ebT)}
              date  instrument     score  position
    0   2021-05-06  123096.ZCB  0.104772         1
    1   2021-05-06  123084.ZCB  0.104772         2
    2   2021-05-06  123050.ZCB  0.104772         3
    3   2021-05-06  113530.HCB  0.104772         4
    4   2021-05-06  113033.HCB  0.104199         5
    ..         ...         ...       ...       ...
    385 2021-06-30  128143.ZCB -0.070900         6
    386 2021-06-30  127021.ZCB -0.070900         7
    387 2021-06-30  128141.ZCB -0.084736         8
    388 2021-06-30  123042.ZCB -0.372995         9
    389 2021-06-30  123043.ZCB -0.372995        10
    
    [390 rows x 4 columns]
    处理data BarDatas(current_dt:2021-05-06 15:00:00)
    处理data BarDatas(current_dt:2021-05-07 15:00:00)
    处理data BarDatas(current_dt:2021-05-10 15:00:00)
    处理data BarDatas(current_dt:2021-05-11 15:00:00)
    处理data BarDatas(current_dt:2021-05-12 15:00:00)
    2022-05-30 17:02:24.494349 market open send order=OrderReq(bkt000,123100.ZCB,'1','0',0,112.0,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:24.495066 market open send order=OrderReq(bkt000,123068.ZCB,'1','0',0,104.7968,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:24.496354 market open send order=OrderReq(bkt000,128033.ZCB,'1','0',0,146.5,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:24.496971 market open send order=OrderReq(bkt000,128013.ZCB,'1','0',0,105.3359,U,0,strategy,2021-05-12 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-13 15:00:00)
    处理data BarDatas(current_dt:2021-05-14 15:00:00)
    处理data BarDatas(current_dt:2021-05-17 15:00:00)
    处理data BarDatas(current_dt:2021-05-18 15:00:00)
    处理data BarDatas(current_dt:2021-05-19 15:00:00)
    处理data BarDatas(current_dt:2021-05-20 15:00:00)
    处理data BarDatas(current_dt:2021-05-21 15:00:00)
    处理data BarDatas(current_dt:2021-05-24 15:00:00)
    2022-05-30 17:02:24.724547 market open send order=OrderReq(bkt000,128106.ZCB,'1','0',0,112.022,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:24.725297 market open send order=OrderReq(bkt000,128082.ZCB,'1','0',0,122.0,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:24.725885 market open send order=OrderReq(bkt000,123007.ZCB,'1','0',0,108.3,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:24.726531 market open send order=OrderReq(bkt000,123105.ZCB,'1','0',0,102.0199,U,0,strategy,2021-05-24 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-05-25 15:00:00)
    处理data BarDatas(current_dt:2021-05-26 15:00:00)
    处理data BarDatas(current_dt:2021-05-27 15:00:00)
    处理data BarDatas(current_dt:2021-05-28 15:00:00)
    处理data BarDatas(current_dt:2021-05-31 15:00:00)
    处理data BarDatas(current_dt:2021-06-01 15:00:00)
    处理data BarDatas(current_dt:2021-06-02 15:00:00)
    处理data BarDatas(current_dt:2021-06-03 15:00:00)
    2022-05-30 17:02:24.928079 market open send order=OrderReq(bkt000,113568.HCB,'1','0',0,109.5299,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:24.928505 market open send order=OrderReq(bkt000,113604.HCB,'1','0',0,110.1699,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:24.928831 market open send order=OrderReq(bkt000,123056.ZCB,'1','0',0,103.51,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:24.929133 market open send order=OrderReq(bkt000,128025.ZCB,'1','0',0,127.3639,U,0,strategy,2021-06-03 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-04 15:00:00)
    处理data BarDatas(current_dt:2021-06-07 15:00:00)
    处理data BarDatas(current_dt:2021-06-08 15:00:00)
    处理data BarDatas(current_dt:2021-06-09 15:00:00)
    处理data BarDatas(current_dt:2021-06-10 15:00:00)
    处理data BarDatas(current_dt:2021-06-11 15:00:00)
    处理data BarDatas(current_dt:2021-06-15 15:00:00)
    处理data BarDatas(current_dt:2021-06-16 15:00:00)
    2022-05-30 17:02:25.168387 market open send order=OrderReq(bkt000,123080.ZCB,'1','0',0,107.0,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:25.168755 market open send order=OrderReq(bkt000,128075.ZCB,'1','0',0,117.315,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:25.169049 market open send order=OrderReq(bkt000,123078.ZCB,'1','0',0,115.273,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:25.169333 market open send order=OrderReq(bkt000,128083.ZCB,'1','0',0,103.1999,U,0,strategy,2021-06-16 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-17 15:00:00)
    处理data BarDatas(current_dt:2021-06-18 15:00:00)
    处理data BarDatas(current_dt:2021-06-21 15:00:00)
    处理data BarDatas(current_dt:2021-06-22 15:00:00)
    处理data BarDatas(current_dt:2021-06-23 15:00:00)
    处理data BarDatas(current_dt:2021-06-24 15:00:00)
    处理data BarDatas(current_dt:2021-06-25 15:00:00)
    处理data BarDatas(current_dt:2021-06-28 15:00:00)
    2022-05-30 17:02:25.348569 market open send order=OrderReq(bkt000,127031.ZCB,'1','0',0,117.3,U,0,strategy,2021-06-28 15:00:00) failed err=-108,委托数量错误 
    2022-05-30 17:02:25.349231 market open send order=OrderReq(bkt000,128135.ZCB,'1','0',0,114.9,U,0,strategy,2021-06-28 15:00:00) failed err=-108,委托数量错误 
    处理data BarDatas(current_dt:2021-06-29 15:00:00)
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    
    • 收益率5.41%
    • 年化收益率38.69%
    • 基准收益率3.22%
    • 阿尔法0.35
    • 贝塔0.12
    • 夏普比率4.43
    • 胜率0.47
    • 盈亏比6.26
    • 收益波动率7.09%
    • 信息比率0.08
    • 最大回撤1.29%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-b8cedec7cddd42a39eb6ee8c605e24ec"}/bigcharts-data-end