复制链接
克隆策略

大盘风控功能

版本v1.0

在开发策略时,经常需要根据大盘指数计算相关技术指标来进行仓位风险控制。

本策略以上证指数5日累计涨幅作为风险控制指标,如果5日累计涨幅小于-4%,则执行清仓止损。

功能实现步骤:

1、新建AI可视化模板策略

2、在回测/模拟模块m19的属性栏中进入“数据准备函数”代码框,在函数体中计算上证指数000001.HIX在回测起止时间段内的5日涨幅指标,同时计算风控信号risk指标保存在context.benckmark_risk变量中:

3、在回测/模拟模块m19的属性栏中进入“主函数”代码框,在函数体中最前端获取当日的风控信号benckmark_risk指标, 如果满足风控条件则将持仓全部卖出后通过return语句返回,结束当天交易实现风险控制功能。

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-9372:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-9372:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-9379:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-9386:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-9393:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3691:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-136:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-9403:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-9386:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-9403:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-9379:input_data","from_node_id":"-9372:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-9379:data"},{"to_node_id":"-9393:input_data","from_node_id":"-9386:data"},{"to_node_id":"-139:input_1","from_node_id":"-9393:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-3691:model"},{"to_node_id":"-3691:training_ds","from_node_id":"-3705:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-3709:data"},{"to_node_id":"-149:input_1","from_node_id":"-136:data_1"},{"to_node_id":"-3705:input_data","from_node_id":"-149:data_1"},{"to_node_id":"-152:input_1","from_node_id":"-139:data_1"},{"to_node_id":"-3709:input_data","from_node_id":"-152:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nta_wma_5_0\nmean(volume_0,90)\nfs_net_cash_flow_0/fs_paicl_up_capital_0\nmean(volume_0,5)\nfs_net_cash_flow_ttm_0\npb_lf_0\nfs_operating_revenue_ttm_0/(fs_total_liability_0+fs_total_equity_0)\nbeta_gem_30_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-9372","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-9372"},{"name":"features","node_id":"-9372"}],"output_ports":[{"name":"data","node_id":"-9372"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-9379","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-9379"},{"name":"features","node_id":"-9379"}],"output_ports":[{"name":"data","node_id":"-9379"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-9386","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"60","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-9386"},{"name":"features","node_id":"-9386"}],"output_ports":[{"name":"data","node_id":"-9386"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-9393","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-9393"},{"name":"features","node_id":"-9393"}],"output_ports":[{"name":"data","node_id":"-9393"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-9403","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.5\n context.options['hold_days'] = 10\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n #获取当日日期\n today = data.current_dt.strftime('%Y-%m-%d')\n stock_hold_now = [equity.symbol for equity in context.portfolio.positions ]\n #大盘风控模块,读取风控数据 \n benckmark_risk=context.benckmark_risk[today]\n context.symbol\n #当risk为1时,市场有风险,全部平仓,不再执行其它操作\n if benckmark_risk > 0:\n for instrument in stock_hold_now:\n context.order_target(symbol(instrument), 0)\n print(today,'大盘风控止损触发,全仓卖出')\n return\n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n #在数据准备函数中一次性计算每日的大盘风控条件相比于在handle中每日计算风控条件可以提高回测速度\n # 多取50天的数据便于计算均值(保证回测的第一天均值不为Nan值),其中context.start_date和context.end_date是回测指定的起始时间和终止时间\n start_date= (pd.to_datetime(context.start_date) - datetime.timedelta(days=50)).strftime('%Y-%m-%d') \n df=DataSource('bar1d_index_CN_STOCK_A').read(start_date=start_date,end_date=context.end_date,fields=['close'])\n benckmark_data=df[df.instrument=='000300.HIX']\n #计算上证指数5日涨幅\n benckmark_data['ret5']=benckmark_data['close']/benckmark_data['close'].shift(5)-1\n #计算大盘风控条件,如果5日涨幅小于-4%则设置风险状态risk为1,否则为0\n benckmark_data['risk'] = np.where(benckmark_data['ret5']<-0.04,1,0)\n #修改日期格式为字符串(便于在handle中使用字符串日期索引来查看每日的风险状态)\n benckmark_data['date']=benckmark_data['date'].apply(lambda x:x.strftime('%Y-%m-%d'))\n #设置日期为索引\n benckmark_data.set_index('date',inplace=True)\n #把风控序列输出给全局变量context.benckmark_risk\n context.benckmark_risk=benckmark_data['risk']\n\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-9403"},{"name":"options_data","node_id":"-9403"},{"name":"history_ds","node_id":"-9403"},{"name":"benchmark_ds","node_id":"-9403"},{"name":"trading_calendar","node_id":"-9403"}],"output_ports":[{"name":"raw_perf","node_id":"-9403"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-3691","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-3691"},{"name":"features","node_id":"-3691"},{"name":"test_ds","node_id":"-3691"},{"name":"base_model","node_id":"-3691"}],"output_ports":[{"name":"model","node_id":"-3691"},{"name":"feature_gains","node_id":"-3691"},{"name":"m_lazy_run","node_id":"-3691"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-3705","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-3705"},{"name":"features","node_id":"-3705"}],"output_ports":[{"name":"data","node_id":"-3705"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-3709","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-3709"},{"name":"features","node_id":"-3709"}],"output_ports":[{"name":"data","node_id":"-3709"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-136","module_id":"BigQuantSpace.filter_delist_stock.filter_delist_stock-v4","parameters":[],"input_ports":[{"name":"input_1","node_id":"-136"}],"output_ports":[{"name":"data_1","node_id":"-136"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-149","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v2","parameters":[],"input_ports":[{"name":"input_1","node_id":"-149"}],"output_ports":[{"name":"data_1","node_id":"-149"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-139","module_id":"BigQuantSpace.filter_delist_stock.filter_delist_stock-v4","parameters":[],"input_ports":[{"name":"input_1","node_id":"-139"}],"output_ports":[{"name":"data_1","node_id":"-139"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-152","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v2","parameters":[],"input_ports":[{"name":"input_1","node_id":"-152"}],"output_ports":[{"name":"data_1","node_id":"-152"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-3636","module_id":"BigQuantSpace.hyper_rolling_train.hyper_rolling_train-v1","parameters":[{"name":"run","value":"def bigquant_run(\n bq_graph,\n inputs,\n trading_days_market='CN', # 使用那个市场的交易日历, TODO\n train_instruments_mid='m1', # 训练数据 证券代码列表 模块id\n test_instruments_mid='m9', # 测试数据 证券代码列表 模块id\n predict_mid='m8', # 预测 模块id\n trade_mid='m19', # 回测 模块id\n start_date='2014-01-01', # 数据开始日期\n end_date=T.live_run_param('trading_date', '2017-01-01'), # 数据结束日期\n train_update_days=250, # 更新周期,按交易日计算,每多少天更新一次\n train_update_days_for_live=None, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数\n train_data_min_days=250, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数\n train_data_max_days=250, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期\n rolling_count_for_live=1, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制\n):\n def merge_datasources(input_1):\n df_list = [ds[0].read_df().set_index('date').loc[ds[1]:].reset_index() for ds in input_1]\n df = pd.concat(df_list)\n instrument_data = {\n 'start_date': df['date'].min().strftime('%Y-%m-%d'),\n 'end_date': df['date'].max().strftime('%Y-%m-%d'),\n 'instruments': list(set(df['instrument'])),\n }\n return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))\n\n def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):\n # 是否实盘模式\n tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])\n is_live_run = T.live_run_param('trading_date', None) is not None\n\n if is_live_run and train_update_days_for_live:\n train_update_days = train_update_days_for_live\n\n rollings = []\n train_end_date = train_data_min_days\n while train_end_date < len(tdays):\n if train_data_max_days is not None and train_data_max_days > 0:\n train_start_date = max(train_end_date - train_data_max_days, 0)\n else:\n train_start_date = 0\n rollings.append({\n 'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),\n 'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),\n 'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),\n 'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),\n })\n train_end_date += train_update_days\n\n if not rollings:\n raise Exception('没有滚动需要执行,请检查配置')\n\n if is_live_run and rolling_count_for_live:\n rollings = rollings[-rolling_count_for_live:]\n\n return rollings\n\n g = bq_graph\n\n rolling_dates = gen_rolling_dates(\n trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)\n\n # 训练和预测\n results = []\n for rolling in rolling_dates:\n parameters = {}\n # 先禁用回测\n parameters[trade_mid + '.__enabled__'] = False\n parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']\n parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']\n parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']\n parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']\n # print('------ rolling_train:', parameters)\n results.append(g.run(parameters))\n\n # 合并预测结果并回测\n mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions, result[test_instruments_mid].data.read_pickle()['start_date']] for result in results])\n parameters = {}\n parameters['*.__enabled__'] = False\n parameters[trade_mid + '.__enabled__'] = True\n parameters[trade_mid + '.instruments'] = mx.instrument_data\n parameters[trade_mid + '.options_data'] = mx.data\n\n trade = g.run(parameters)\n\n return {'rollings': results, 'trade': trade}\n","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-3636"},{"name":"input_1","node_id":"-3636"},{"name":"input_2","node_id":"-3636"},{"name":"input_3","node_id":"-3636"}],"output_ports":[{"name":"result","node_id":"-3636"}],"cacheable":false,"seq_num":14,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='1012,919,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='-9372' Position='381,188,200,200'/><node_position Node='-9379' Position='385,280,200,200'/><node_position Node='-9386' Position='1078,236,200,200'/><node_position Node='-9393' Position='1081,327,200,200'/><node_position Node='-9403' Position='972.336669921875,998.6260986328125,200,200'/><node_position Node='-3691' Position='771,738,200,200'/><node_position Node='-3705' Position='479,676,200,200'/><node_position Node='-3709' Position='1173,684,200,200'/><node_position Node='-136' Position='290,485,200,200'/><node_position Node='-149' Position='312,570,200,200'/><node_position Node='-139' Position='1166,422,200,200'/><node_position Node='-152' Position='1216,547,200,200'/><node_position Node='-3636' Position='247.32815551757812,894.1371459960938,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [8]:
    # 本代码由可视化策略环境自动生成 2022年4月12日 13:01
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.5
        context.options['hold_days'] = 10
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        #获取当日日期
        today = data.current_dt.strftime('%Y-%m-%d')
        stock_hold_now = [equity.symbol for equity in context.portfolio.positions ]
        #大盘风控模块,读取风控数据    
        benckmark_risk=context.benckmark_risk[today]
        context.symbol
        #当risk为1时,市场有风险,全部平仓,不再执行其它操作
        if benckmark_risk > 0:
            for instrument in stock_hold_now:
                context.order_target(symbol(instrument), 0)
            print(today,'大盘风控止损触发,全仓卖出')
            return
     
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        #在数据准备函数中一次性计算每日的大盘风控条件相比于在handle中每日计算风控条件可以提高回测速度
        # 多取50天的数据便于计算均值(保证回测的第一天均值不为Nan值),其中context.start_date和context.end_date是回测指定的起始时间和终止时间
        start_date= (pd.to_datetime(context.start_date) - datetime.timedelta(days=50)).strftime('%Y-%m-%d') 
        df=DataSource('bar1d_index_CN_STOCK_A').read(start_date=start_date,end_date=context.end_date,fields=['close'])
        benckmark_data=df[df.instrument=='000300.HIX']
        #计算上证指数5日涨幅
        benckmark_data['ret5']=benckmark_data['close']/benckmark_data['close'].shift(5)-1
        #计算大盘风控条件,如果5日涨幅小于-4%则设置风险状态risk为1,否则为0
        benckmark_data['risk'] = np.where(benckmark_data['ret5']<-0.04,1,0)
        #修改日期格式为字符串(便于在handle中使用字符串日期索引来查看每日的风险状态)
        benckmark_data['date']=benckmark_data['date'].apply(lambda x:x.strftime('%Y-%m-%d'))
        #设置日期为索引
        benckmark_data.set_index('date',inplace=True)
        #把风控序列输出给全局变量context.benckmark_risk
        context.benckmark_risk=benckmark_data['risk']
    
    
    
    g = T.Graph({
    
        'm1': 'M.instruments.v2',
        'm1.start_date': '2015-01-01',
        'm1.end_date': '2018-01-01',
        'm1.market': 'CN_STOCK_A',
        'm1.instrument_list': '',
        'm1.max_count': 0,
    
        'm2': 'M.advanced_auto_labeler.v2',
        'm2.instruments': T.Graph.OutputPort('m1.data'),
        'm2.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        'm2.start_date': '',
        'm2.end_date': '',
        'm2.benchmark': '000300.SHA',
        'm2.drop_na_label': True,
        'm2.cast_label_int': True,
    
        'm3': 'M.input_features.v1',
        'm3.features': """# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    ta_wma_5_0
    mean(volume_0,90)
    fs_net_cash_flow_0/fs_paicl_up_capital_0
    mean(volume_0,5)
    fs_net_cash_flow_ttm_0
    pb_lf_0
    fs_operating_revenue_ttm_0/(fs_total_liability_0+fs_total_equity_0)
    beta_gem_30_0
    """,
    
        'm15': 'M.general_feature_extractor.v7',
        'm15.instruments': T.Graph.OutputPort('m1.data'),
        'm15.features': T.Graph.OutputPort('m3.data'),
        'm15.start_date': '',
        'm15.end_date': '',
        'm15.before_start_days': 0,
    
        'm16': 'M.derived_feature_extractor.v3',
        'm16.input_data': T.Graph.OutputPort('m15.data'),
        'm16.features': T.Graph.OutputPort('m3.data'),
        'm16.date_col': 'date',
        'm16.instrument_col': 'instrument',
        'm16.drop_na': False,
        'm16.remove_extra_columns': False,
    
        'm7': 'M.join.v3',
        'm7.data1': T.Graph.OutputPort('m2.data'),
        'm7.data2': T.Graph.OutputPort('m16.data'),
        'm7.on': 'date,instrument',
        'm7.how': 'inner',
        'm7.sort': False,
    
        'm6': 'M.filter_delist_stock.v4',
        'm6.input_1': T.Graph.OutputPort('m7.data'),
    
        'm11': 'M.filtet_st_stock.v2',
        'm11.input_1': T.Graph.OutputPort('m6.data_1'),
    
        'm5': 'M.dropnan.v2',
        'm5.input_data': T.Graph.OutputPort('m11.data_1'),
    
        'm4': 'M.stock_ranker_train.v6',
        'm4.training_ds': T.Graph.OutputPort('m5.data'),
        'm4.features': T.Graph.OutputPort('m3.data'),
        'm4.learning_algorithm': '排序',
        'm4.number_of_leaves': 30,
        'm4.minimum_docs_per_leaf': 1000,
        'm4.number_of_trees': 20,
        'm4.learning_rate': 0.1,
        'm4.max_bins': 1023,
        'm4.feature_fraction': 1,
        'm4.data_row_fraction': 1,
        'm4.plot_charts': True,
        'm4.ndcg_discount_base': 1,
        'm4.m_lazy_run': False,
    
        'm9': 'M.instruments.v2',
        'm9.start_date': T.live_run_param('trading_date', '2018-01-01'),
        'm9.end_date': T.live_run_param('trading_date', '2020-12-31'),
        'm9.market': 'CN_STOCK_A',
        'm9.instrument_list': '',
        'm9.max_count': 0,
    
        'm17': 'M.general_feature_extractor.v7',
        'm17.instruments': T.Graph.OutputPort('m9.data'),
        'm17.features': T.Graph.OutputPort('m3.data'),
        'm17.start_date': '',
        'm17.end_date': '',
        'm17.before_start_days': 60,
    
        'm18': 'M.derived_feature_extractor.v3',
        'm18.input_data': T.Graph.OutputPort('m17.data'),
        'm18.features': T.Graph.OutputPort('m3.data'),
        'm18.date_col': 'date',
        'm18.instrument_col': 'instrument',
        'm18.drop_na': False,
        'm18.remove_extra_columns': False,
    
        'm12': 'M.filter_delist_stock.v4',
        'm12.input_1': T.Graph.OutputPort('m18.data'),
    
        'm13': 'M.filtet_st_stock.v2',
        'm13.input_1': T.Graph.OutputPort('m12.data_1'),
    
        'm10': 'M.dropnan.v2',
        'm10.input_data': T.Graph.OutputPort('m13.data_1'),
    
        'm8': 'M.stock_ranker_predict.v5',
        'm8.model': T.Graph.OutputPort('m4.model'),
        'm8.data': T.Graph.OutputPort('m10.data'),
        'm8.m_lazy_run': False,
    
        'm19': 'M.trade.v4',
        'm19.instruments': T.Graph.OutputPort('m9.data'),
        'm19.options_data': T.Graph.OutputPort('m8.predictions'),
        'm19.start_date': '2020-01-01',
        'm19.end_date': '2021-12-31',
        'm19.initialize': m19_initialize_bigquant_run,
        'm19.handle_data': m19_handle_data_bigquant_run,
        'm19.prepare': m19_prepare_bigquant_run,
        'm19.volume_limit': 0.025,
        'm19.order_price_field_buy': 'open',
        'm19.order_price_field_sell': 'close',
        'm19.capital_base': 1000000,
        'm19.auto_cancel_non_tradable_orders': True,
        'm19.data_frequency': 'daily',
        'm19.price_type': '后复权',
        'm19.product_type': '股票',
        'm19.plot_charts': True,
        'm19.backtest_only': False,
        'm19.benchmark': '000300.HIX',
    })
    
    # g.run({})
    
    
    def m14_run_bigquant_run(
        bq_graph,
        inputs,
        trading_days_market='CN', # 使用那个市场的交易日历, TODO
        train_instruments_mid='m1', # 训练数据 证券代码列表 模块id
        test_instruments_mid='m9', # 测试数据 证券代码列表 模块id
        predict_mid='m8', # 预测 模块id
        trade_mid='m19', # 回测 模块id
        start_date='2014-01-01', # 数据开始日期
        end_date=T.live_run_param('trading_date', '2017-01-01'), # 数据结束日期
        train_update_days=250, # 更新周期,按交易日计算,每多少天更新一次
        train_update_days_for_live=None, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数
        train_data_min_days=250, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数
        train_data_max_days=250, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期
        rolling_count_for_live=1, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制
    ):
        def merge_datasources(input_1):
            df_list = [ds[0].read_df().set_index('date').loc[ds[1]:].reset_index() for ds in input_1]
            df = pd.concat(df_list)
            instrument_data = {
                'start_date': df['date'].min().strftime('%Y-%m-%d'),
                'end_date': df['date'].max().strftime('%Y-%m-%d'),
                'instruments': list(set(df['instrument'])),
            }
            return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))
    
        def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):
            # 是否实盘模式
            tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])
            is_live_run = T.live_run_param('trading_date', None) is not None
    
            if is_live_run and train_update_days_for_live:
                train_update_days = train_update_days_for_live
    
            rollings = []
            train_end_date = train_data_min_days
            while train_end_date < len(tdays):
                if train_data_max_days is not None and train_data_max_days > 0:
                    train_start_date = max(train_end_date - train_data_max_days, 0)
                else:
                    train_start_date = 0
                rollings.append({
                    'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),
                    'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),
                    'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),
                    'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),
                })
                train_end_date += train_update_days
    
            if not rollings:
                raise Exception('没有滚动需要执行,请检查配置')
    
            if is_live_run and rolling_count_for_live:
                rollings = rollings[-rolling_count_for_live:]
    
            return rollings
    
        g = bq_graph
    
        rolling_dates = gen_rolling_dates(
            trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)
    
        # 训练和预测
        results = []
        for rolling in rolling_dates:
            parameters = {}
            # 先禁用回测
            parameters[trade_mid + '.__enabled__'] = False
            parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']
            parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']
            parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']
            parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']
            # print('------ rolling_train:', parameters)
            results.append(g.run(parameters))
    
        # 合并预测结果并回测
        mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions, result[test_instruments_mid].data.read_pickle()['start_date']] for result in results])
        parameters = {}
        parameters['*.__enabled__'] = False
        parameters[trade_mid + '.__enabled__'] = True
        parameters[trade_mid + '.instruments'] = mx.instrument_data
        parameters[trade_mid + '.options_data'] = mx.data
    
        trade = g.run(parameters)
    
        return {'rollings': results, 'trade': trade}
    
    
    m14 = M.hyper_rolling_train.v1(
        run=m14_run_bigquant_run,
        run_now=True,
        bq_graph=g
    )
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-4db52244911f435ba2710493e6dbe1fc"}/bigcharts-data-end
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-7e10d8ccc57043e7b22b8cbbf68f304f"}/bigcharts-data-end
    2020-02-03 大盘风控止损触发,全仓卖出
    2020-02-04 大盘风控止损触发,全仓卖出
    2020-02-05 大盘风控止损触发,全仓卖出
    2020-02-06 大盘风控止损触发,全仓卖出
    2020-02-28 大盘风控止损触发,全仓卖出
    2020-03-12 大盘风控止损触发,全仓卖出
    2020-03-13 大盘风控止损触发,全仓卖出
    2020-03-16 大盘风控止损触发,全仓卖出
    2020-03-17 大盘风控止损触发,全仓卖出
    2020-03-18 大盘风控止损触发,全仓卖出
    2020-03-19 大盘风控止损触发,全仓卖出
    2020-03-20 大盘风控止损触发,全仓卖出
    2020-03-23 大盘风控止损触发,全仓卖出
    2020-07-16 大盘风控止损触发,全仓卖出
    2020-07-17 大盘风控止损触发,全仓卖出
    2020-09-09 大盘风控止损触发,全仓卖出
    2020-09-10 大盘风控止损触发,全仓卖出
    2021-02-24 大盘风控止损触发,全仓卖出
    2021-02-25 大盘风控止损触发,全仓卖出
    2021-02-26 大盘风控止损触发,全仓卖出
    2021-03-02 大盘风控止损触发,全仓卖出
    2021-03-08 大盘风控止损触发,全仓卖出
    2021-03-09 大盘风控止损触发,全仓卖出
    2021-03-10 大盘风控止损触发,全仓卖出
    2021-03-25 大盘风控止损触发,全仓卖出
    2021-04-12 大盘风控止损触发,全仓卖出
    2021-07-27 大盘风控止损触发,全仓卖出
    2021-07-28 大盘风控止损触发,全仓卖出
    2021-07-29 大盘风控止损触发,全仓卖出
    2021-07-30 大盘风控止损触发,全仓卖出
    2021-08-17 大盘风控止损触发,全仓卖出
    2021-12-20 大盘风控止损触发,全仓卖出
    
    • 收益率0.0%
    • 年化收益率0.0%
    • 基准收益率20.6%
    • 阿尔法-0.03
    • 贝塔0.0
    • 夏普比率n/a
    • 胜率0.0
    • 盈亏比0.0
    • 收益波动率0.0%
    • 信息比率-0.04
    • 最大回撤0.0%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-7a614fe8771e4defa2f761b7ca6a314f"}/bigcharts-data-end