{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-784:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-784:features","SourceOutputPortId":"-714:data"},{"DestinationInputPortId":"-829:input_1","SourceOutputPortId":"-784:data"},{"DestinationInputPortId":"-795:input_data","SourceOutputPortId":"-829:data_1"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-09-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"Comment":"","CommentCollapsed":true},{"Id":"-714","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nclose_0\nopen_0\nhigh_0\nlow_0\nindustry_sw_level1_0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-714"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-714","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"Comment":"","CommentCollapsed":true},{"Id":"-784","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"30","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-784"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-784"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-784","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"","CommentCollapsed":true},{"Id":"-795","ModuleId":"BigQuantSpace.auto_labeler_on_datasource.auto_labeler_on_datasource-v1","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\ngroup_rank(industry_sw_level1_0,shift(close_0,-5)/shift(open_0,-1)-1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high_0, -1) == shift(low_0, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-795"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-795","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"Comment":"","CommentCollapsed":true},{"Id":"-829","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read().reset_index(drop=True)\n data_1 = DataSource.write_df(df)\n return Outputs(data_1=data_1)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-829"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-829"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-829"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-829","OutputType":null},{"Name":"data_2","NodeId":"-829","OutputType":null},{"Name":"data_3","NodeId":"-829","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='-20,-88,200,200'/><NodePosition Node='-714' Position='349,-92,200,200'/><NodePosition Node='-784' Position='141,79,200,200'/><NodePosition Node='-795' Position='169.51089477539062,307.729248046875,200,200'/><NodePosition Node='-829' Position='158.24896240234375,190.45849609375,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2021-06-22 14:25:27.625409] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-06-22 14:25:27.634723] INFO: moduleinvoker: 命中缓存
[2021-06-22 14:25:27.637431] INFO: moduleinvoker: instruments.v2 运行完成[0.012005s].
[2021-06-22 14:25:27.640418] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-06-22 14:25:27.648064] INFO: moduleinvoker: 命中缓存
[2021-06-22 14:25:27.649493] INFO: moduleinvoker: input_features.v1 运行完成[0.009085s].
[2021-06-22 14:25:27.657489] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-06-22 14:25:27.663954] INFO: moduleinvoker: 命中缓存
[2021-06-22 14:25:27.665308] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007834s].
[2021-06-22 14:25:27.669926] INFO: moduleinvoker: cached.v3 开始运行..
[2021-06-22 14:25:27.677680] INFO: moduleinvoker: 命中缓存
[2021-06-22 14:25:27.678858] INFO: moduleinvoker: cached.v3 运行完成[0.008933s].
[2021-06-22 14:25:27.681398] INFO: moduleinvoker: auto_labeler_on_datasource.v1 开始运行..
[2021-06-22 14:25:27.957375] INFO: 自动标注(任意数据源): 开始标注 ..
[2021-06-22 14:25:29.577921] INFO: moduleinvoker: auto_labeler_on_datasource.v1 运行完成[1.896503s].