{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-773:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-132:features_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-768:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-778:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3895:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3907:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-1918:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-224:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-175:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-768:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-778:input_1","from_node_id":"-129:data"},{"to_node_id":"-2680:inputs","from_node_id":"-160:data"},{"to_node_id":"-3880:inputs","from_node_id":"-160:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-1098:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-202:data1","from_node_id":"-2431:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-768:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-773:data"},{"to_node_id":"-251:input_data","from_node_id":"-778:data"},{"to_node_id":"-2431:input_2","from_node_id":"-778:data"},{"to_node_id":"-3895:input_1","from_node_id":"-243:data"},{"to_node_id":"-3907:input_1","from_node_id":"-251:data"},{"to_node_id":"-2712:inputs","from_node_id":"-2680:data"},{"to_node_id":"-3840:inputs","from_node_id":"-2712:data"},{"to_node_id":"-3784:inputs","from_node_id":"-3773:data"},{"to_node_id":"-3880:outputs","from_node_id":"-3784:data"},{"to_node_id":"-3872:inputs","from_node_id":"-3840:data"},{"to_node_id":"-3773:inputs","from_node_id":"-3872:data"},{"to_node_id":"-1098:input_model","from_node_id":"-3880:data"},{"to_node_id":"-1098:training_data","from_node_id":"-3895:data_1"},{"to_node_id":"-1540:input_data","from_node_id":"-3907:data_1"},{"to_node_id":"-106:features","from_node_id":"-132:data"},{"to_node_id":"-122:features","from_node_id":"-132:data"},{"to_node_id":"-113:features","from_node_id":"-132:data"},{"to_node_id":"-129:features","from_node_id":"-132:data"},{"to_node_id":"-224:features","from_node_id":"-148:data"},{"to_node_id":"-189:data1","from_node_id":"-224:data"},{"to_node_id":"-202:data2","from_node_id":"-189:data"},{"to_node_id":"-1918:options_data","from_node_id":"-202:data"},{"to_node_id":"-175:input_2","from_node_id":"-12762:data"},{"to_node_id":"-196:input_ds","from_node_id":"-175:data_1"},{"to_node_id":"-189:data2","from_node_id":"-196:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2017-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":" ","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"high_0\nhigh_1\nhigh_2\nhigh_3\nhigh_4\nlow_0\nlow_1\nlow_2\nlow_3\nlow_4\n# 5日平均换手率\navg_turn_5 \n# 5日平均振幅\n(high_0-low_0+high_1-low_1+high_2-low_2+high_3-low_3+high_4-low_4)/5 \n# 市盈率LYR\npe_lyr_0\n# 5日净主动买入额\nmf_net_amount_5 \n# 10日净主动买入额\nmf_net_amount_10 \n# 20日净主动买入额\nmf_net_amount_20\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-12","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"16,5","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-1098","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"RMSprop","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mae","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"256","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"20","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-1098"},{"name":"training_data","node_id":"-1098"},{"name":"validation_data","node_id":"-1098"}],"output_ports":[{"name":"data","node_id":"-1098"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-768","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-768"},{"name":"input_2","node_id":"-768"}],"output_ports":[{"name":"data","node_id":"-768"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-773","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-773"},{"name":"input_2","node_id":"-773"}],"output_ports":[{"name":"data","node_id":"-773"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-778","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-778"},{"name":"input_2","node_id":"-778"}],"output_ports":[{"name":"data","node_id":"-778"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-2680","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"20","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-2680"}],"output_ports":[{"name":"data","node_id":"-2680"}],"cacheable":false,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-2712","module_id":"BigQuantSpace.dl_layer_maxpooling1d.dl_layer_maxpooling1d-v1","parameters":[{"name":"pool_size","value":"1","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-2712"}],"output_ports":[{"name":"data","node_id":"-2712"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-3773","module_id":"BigQuantSpace.dl_layer_globalmaxpooling1d.dl_layer_globalmaxpooling1d-v1","parameters":[{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-3773"}],"output_ports":[{"name":"data","node_id":"-3773"}],"cacheable":false,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-3784","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-3784"}],"output_ports":[{"name":"data","node_id":"-3784"}],"cacheable":false,"seq_num":30,"comment":"","comment_collapsed":true},{"node_id":"-3840","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"20","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-3840"}],"output_ports":[{"name":"data","node_id":"-3840"}],"cacheable":false,"seq_num":32,"comment":"","comment_collapsed":true},{"node_id":"-3872","module_id":"BigQuantSpace.dl_layer_maxpooling1d.dl_layer_maxpooling1d-v1","parameters":[{"name":"pool_size","value":"1","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-3872"}],"output_ports":[{"name":"data","node_id":"-3872"}],"cacheable":false,"seq_num":33,"comment":"","comment_collapsed":true},{"node_id":"-3880","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-3880"},{"name":"outputs","node_id":"-3880"}],"output_ports":[{"name":"data","node_id":"-3880"}],"cacheable":false,"seq_num":34,"comment":"","comment_collapsed":true},{"node_id":"-3895","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n df = input_1.read_pickle()\n feature_len = len(input_2.read_pickle())\n \n \n df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))\n \n data_1 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3895"},{"name":"input_2","node_id":"-3895"},{"name":"input_3","node_id":"-3895"}],"output_ports":[{"name":"data_1","node_id":"-3895"},{"name":"data_2","node_id":"-3895"},{"name":"data_3","node_id":"-3895"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-3907","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_pickle()\n feature_len = len(input_2.read_pickle())\n \n \n df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))\n \n data_1 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3907"},{"name":"input_2","node_id":"-3907"},{"name":"input_3","node_id":"-3907"}],"output_ports":[{"name":"data_1","node_id":"-3907"},{"name":"data_2","node_id":"-3907"},{"name":"data_3","node_id":"-3907"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-132","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nclose_0\nhigh_1\nopen_0\nlow_0\nst_status_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-132"}],"output_ports":[{"name":"data","node_id":"-132"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-148","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nname","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-148"}],"output_ports":[{"name":"data","node_id":"-148"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-224","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"instruments_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-224"},{"name":"features","node_id":"-224"}],"output_ports":[{"name":"data","node_id":"-224"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-189","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date","type":"Literal","bound_global_parameter":null},{"name":"how","value":"left","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-189"},{"name":"data2","node_id":"-189"}],"output_ports":[{"name":"data","node_id":"-189"}],"cacheable":true,"seq_num":31,"comment":"","comment_collapsed":true},{"node_id":"-202","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"left","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-202"},{"name":"data2","node_id":"-202"}],"output_ports":[{"name":"data","node_id":"-202"}],"cacheable":true,"seq_num":35,"comment":"","comment_collapsed":true},{"node_id":"-1918","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument =0.1\n context.options['hold_days'] = 5\n \n # 这一段感觉是在为盘前准备函数写的,当order.amount>0时,认为是买入,<0卖出。\n from zipline.finance.slippage import SlippageModel\n class FixedPriceSlippage(SlippageModel):\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price = data.current(order.asset, price_field)\n else:\n price = data.current(order.asset, self._price_field_buy)\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 设置price_field,默认是开盘买入,收盘卖出\n context.fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='close')\n context.set_slippage(us_equities=context.fix_slippage)","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 获取当前持仓\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n \n today = data.current_dt.strftime('%Y-%m-%d')\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == today]\n try:\n #大盘风控模块,读取风控数据 \n # 利用沪深300的dif下穿dea作为大盘风控的条件\n benckmark_risk=ranker_prediction['bm_0'].values[0]\n if benckmark_risk > 0 and len(positions) > 0:\n for instrument in positions.keys():\n context.order_target(context.symbol(instrument), 0)\n print(today,'大盘风控止损触发,全仓卖出')\n return\n except:\n print('缺失风控数据!')\n \n today_date = data.current_dt.strftime('%Y-%m-%d')\n positions_all = [equity.symbol for equity in context.portfolio.positions]\n dataprediction=context.dataprediction\n today_prediction=dataprediction[dataprediction.date==today_date].direction.values[0]\n # 满足空仓条件\n if today_prediction<0:\t\n if len(positions_all)>0:\n # 全部卖出后返回\n for i in positions_all:\n if data.can_trade(context.symbol(i)):\n context.order_target_percent(context.symbol(i), 0)\n print('风控执行',today_date)\n return\n #运行风控后当日结束,不再执行后续的买卖订单\n \n \n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n \n \n # 2. 根据需要加入移动止赢止损模块、固定天数卖出模块、ST或退市股卖出模块\n stock_sold = [] # 记录卖出的股票,防止多次卖出出现空单\n \n #------------------------START:止赢止损模块(含建仓期)---------------\n current_stopwin_stock=[]\n current_stoploss_stock = [] \n positions_cost={e.symbol:p.cost_basis for e,p in context.portfolio.positions.items()}\n if len(positions)>0:\n for instrument in positions.keys():\n stock_cost=positions_cost[instrument] \n stock_market_price=data.current(context.symbol(instrument),'price') \n volume_since_buy = data.history(context.symbol(instrument), 'volume', 6, '1d')\n # 赚60%且为可交易状态就止盈\n if stock_market_price/stock_cost-1>=0.5 and data.can_trade(context.symbol(instrument)):\n context.order_target_percent(context.symbol(instrument),0)\n cash_for_sell -= positions[instrument]\n current_stopwin_stock.append(instrument)\n # 亏5%并且为可交易状态就止损\n if stock_market_price/stock_cost-1 <= -0.05 and data.can_trade(context.symbol(instrument)): \n context.order_target_percent(context.symbol(instrument),0)\n cash_for_sell -= positions[instrument]\n current_stoploss_stock.append(instrument)\n # 放天量 止损:\n# if (volume_since_buy[0]>1.5*volume_since_buy[1]) |(volume_since_buy[0]>1.5*(volume_since_buy[1]+volume_since_buy[2]+volume_since_buy[3]+volume_since_buy[4]+volume_since_buy[5])/5):\n# context.order_target_percent(context.symbol(instrument),0)\n# cash_for_sell -= positions[instrument]\n# current_stoploss_stock.append(instrument)\n if len(current_stopwin_stock)>0:\n print(today,'止盈股票列表',current_stopwin_stock)\n stock_sold += current_stopwin_stock\n if len(current_stoploss_stock)>0:\n print(today,'止损股票列表',current_stoploss_stock)\n stock_sold += current_stoploss_stock\n #--------------------------END: 止赢止损模块--------------------------\n \n #--------------------------START:持有固定天数卖出(不含建仓期)-----------\n current_stopdays_stock = []\n positions_lastdate = {e.symbol:p.last_sale_date for e,p in context.portfolio.positions.items()}\n # 不是建仓期(在前hold_days属于建仓期)\n if not is_staging:\n for instrument in positions.keys():\n #如果上面的止盈止损已经卖出过了,就不要重复卖出以防止产生空单\n if instrument in stock_sold:\n continue\n # 今天和上次交易的时间相隔hold_days就全部卖出 datetime.timedelta(context.options['hold_days'])也可以换成自己需要的天数,比如datetime.timedelta(5)\n if data.current_dt - positions_lastdate[instrument]>=datetime.timedelta(22) and data.can_trade(context.symbol(instrument)):\n context.order_target_percent(context.symbol(instrument), 0)\n current_stopdays_stock.append(instrument)\n cash_for_sell -= positions[instrument]\n if len(current_stopdays_stock)>0: \n print(today,'固定天数卖出列表',current_stopdays_stock)\n stock_sold += current_stopdays_stock\n #------------------------- END:持有固定天数卖出-----------------------\n \n #-------------------------- START: ST和退市股卖出 --------------------- \n st_stock_list = []\n for instrument in positions.keys():\n try:\n instrument_name = ranker_prediction[ranker_prediction.instrument==instrument].name.values[0]\n # 如果股票状态变为了st或者退市 则卖出\n if 'ST' in instrument_name or '退' in instrument_name:\n if instrument in stock_sold:\n continue\n if data.can_trade(context.symbol(instrument)):\n context.order_target(context.symbol(instrument), 0)\n st_stock_list.append(instrument)\n cash_for_sell -= positions[instrument]\n except:\n continue\n if st_stock_list!=[]:\n print(today,'持仓出现st股/退市股',st_stock_list,'进行卖出处理') \n stock_sold += st_stock_list\n\n #-------------------------- END: ST和退市股卖出 --------------------- \n \n \n # 3. 生成轮仓卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in positions)])))\n for instrument in instruments:\n # 如果资金够了就不卖出了\n if cash_for_sell <= 0:\n break\n #防止多个止损条件同时满足,出现多次卖出产生空单\n if instrument in stock_sold:\n continue\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n stock_sold.append(instrument)\n\n # 4. 生成轮仓买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n # 计算今日跌停的股票\n #dt_list = list(ranker_prediction[ranker_prediction.price_limit_status_0==1].instrument)\n # 计算今日ST/退市的股票\n st_list = list(ranker_prediction[ranker_prediction.name.str.contains('ST')|ranker_prediction.name.str.contains('退')].instrument)\n # 计算所有禁止买入的股票池\n banned_list = stock_sold+st_list\n buy_cash_weights = context.stock_weights\n buy_instruments=[k for k in list(ranker_prediction.instrument) if k not in banned_list][:len(buy_cash_weights)]\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n current_price = data.current(context.symbol(instrument), 'price')\n amount = math.floor(cash / current_price - cash / current_price % 100)\n context.order(context.symbol(instrument), amount)\n \n\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n context.status_df = D.features(instruments =context.instruments,start_date = context.start_date, end_date = context.end_date, \n fields=['st_status_0','price_limit_status_0','price_limit_status_1'])\n seq_len=5 #每个input的长度\n # 导入包 \n from tensorflow.keras.layers import Activation, Dropout\n from tensorflow.keras.models import Sequential\n from tensorflow.keras import optimizers\n import tensorflow.keras as tf \n from sklearn.preprocessing import scale\n from tensorflow.keras.layers import Input, Dense, LSTM\n from tensorflow.keras.models import Model\n # 基础参数配置\n instrument = '000300.SHA' #股票代码\n #设置用于训练和回测的开始/结束日期\n train_length=seq_len*10\n # 多取几天的数据,这里前100天\n start_date_temp= (pd.to_datetime(context.start_date) - datetime.timedelta(days=2*train_length)).strftime('%Y-%m-%d')\n print(start_date_temp)\n len1=len(D.trading_days(start_date=start_date_temp, end_date=context.end_date)) \n print(len1)\n len2=len(D.trading_days(start_date=context.start_date, end_date=context.end_date))\n print(len2)\n distance=len1-len2\n print(distance)\n trade_day=D.trading_days(start_date=start_date_temp, end_date=context.end_date)\n print(trade_day)\n start_date = trade_day.iloc[distance-train_length][0].strftime('%Y-%m-%d')\n print(start_date)\n split_date = trade_day.iloc[distance-1][0].strftime('%Y-%m-%d')\n print(split_date)\n # features因子\n fields = ['close', 'open', 'high', 'low', 'amount', 'volume'] \n #整数,指定进行梯度下降时每个batch包含的样本数,训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步\n batch = 100\n \n # 数据导入以及初步处理\n data1 = D.history_data(instrument, start_date, context.end_date, fields)\n data1['return'] = data1['close'].shift(-5) / data1['open'].shift(-1) - 1 #计算未来5日收益率(未来第五日的收盘价/明日的开盘价)\n data1=data1[data1.amount>0]\n datatime = data1['date'][data1.date>split_date] #记录predictions的时间,回测要用\n data1['return'] = data1['return']\n data1['return'] = data1['return']*10 # 适当增大return(收益)范围,利于LSTM模型训练\n data1.reset_index(drop=True, inplace=True)\n scaledata = data1[fields]\n traindata = data1[data1.date<=split_date]\n \n # 数据处理:设定每个input(series×6features)以及数据标准化\n train_input = []\n train_output = []\n test_input = []\n for i in range(seq_len-1, len(traindata)):\n a = scale(scaledata[i+1-seq_len:i+1])\n train_input.append(a)\n c = data1['return'][i]\n train_output.append(c)\n for j in range(len(traindata), len(data1)):\n b = scale(scaledata[j+1-seq_len:j+1])\n test_input.append(b)\n\n\n # LSTM接受数组类型的输入\n train_x = np.array(train_input)\n train_y = np.array(train_output)\n test_x = np.array(test_input) \n\n # 自定义激活函数\n import tensorflow.keras as tf\n def atan(x): \n return tf.atan(x)\n # 构建神经网络层 1层LSTM层+3层Dense层\n # 用于1个输入情况\n lstm_input = Input(shape=(seq_len,len(fields)), name='lstm_input')\n lstm_output = LSTM(32,input_shape=(seq_len,len(fields)))(lstm_input)\n Dense_output_1 = Dense(16, activation='linear')(lstm_output)\n Dense_output_2 = Dense(4, activation='linear')(Dense_output_1)\n predictions = Dense(1)(Dense_output_2)\n model = Model(inputs=lstm_input, outputs=predictions)\n model.compile(optimizer='adam', loss='mse', metrics=['mse'])\n model.fit(train_x, train_y, batch_size=batch, epochs=5, verbose=0)\n # 预测\n predictions = model.predict(test_x)\n # 如果预测值>0,取为1;如果预测值<=0,取为-1.为回测做准备\n for i in range(len(predictions)):\n if predictions[i]>0:\n predictions[i]=1\n elif predictions[i]<=0:\n predictions[i]=-1\n \n # 将预测值与时间整合作为回测数据\n cc = np.reshape(predictions,len(predictions), )\n dataprediction = pd.DataFrame()\n dataprediction['date'] = datatime\n dataprediction['direction']=np.round(cc)\n context.dataprediction=dataprediction\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"def bigquant_run(context, data):\n # 获取涨跌停状态数据\n df_price_limit_status = context.ranker_prediction.set_index('date')\n today=data.current_dt.strftime('%Y-%m-%d')\n # 得到当前未完成订单\n for orders in get_open_orders().values():\n # 循环,撤销订单\n for _order in orders:\n ins=str(_order.sid.symbol)\n try:\n #判断一下如果当日涨停(3),则取消卖单\n if df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.ix[today]>2 and _order.amount<0:\n cancel_order(_order)\n print(today,'尾盘涨停取消卖单',ins) \n except:\n continue","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"1000001","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1918"},{"name":"options_data","node_id":"-1918"},{"name":"history_ds","node_id":"-1918"},{"name":"benchmark_ds","node_id":"-1918"},{"name":"trading_calendar","node_id":"-1918"}],"output_ports":[{"name":"raw_perf","node_id":"-1918"}],"cacheable":false,"seq_num":37,"comment":"","comment_collapsed":true},{"node_id":"-12762","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\n#bm_0 = where(close/shift(close,5)-1<-0.05,1,0)\n# 如果macd中的dif下穿macd中的dea,则bm_0等于1,否则等于0\nbm_0=where(ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4)<0,1,0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-12762"}],"output_ports":[{"name":"data","node_id":"-12762"}],"cacheable":true,"seq_num":19,"comment":"卖出条件","comment_collapsed":true},{"node_id":"-175","module_id":"BigQuantSpace.index_feature_extract.index_feature_extract-v3","parameters":[{"name":"before_days","value":100,"type":"Literal","bound_global_parameter":null},{"name":"index","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-175"},{"name":"input_2","node_id":"-175"}],"output_ports":[{"name":"data_1","node_id":"-175"},{"name":"data_2","node_id":"-175"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.select_columns.select_columns-v3","parameters":[{"name":"columns","value":"date,bm_0","type":"Literal","bound_global_parameter":null},{"name":"reverse_select","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-196"},{"name":"columns_ds","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":true,"seq_num":39,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='642,152,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='642,224,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='950,80,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='779,424,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1250,133,200,200'/><node_position Node='-106' Position='940,219,200,200'/><node_position Node='-113' Position='945,293,200,200'/><node_position Node='-122' Position='1254,205,200,200'/><node_position Node='-129' Position='1258,276,200,200'/><node_position Node='-160' Position='346,127,200,200'/><node_position Node='-1098' Position='347,662,200,200'/><node_position Node='-1540' Position='352,722,200,200'/><node_position Node='-2431' Position='343,802,200,200'/><node_position Node='-768' Position='943,360,200,200'/><node_position Node='-773' Position='644,290,200,200'/><node_position Node='-778' Position='1248,367,200,200'/><node_position Node='-243' Position='779,547,200,200'/><node_position Node='-251' Position='1251,485,200,200'/><node_position Node='-2680' Position='352,190,200,200'/><node_position Node='-2712' Position='348,263,200,200'/><node_position Node='-3773' Position='348,454,200,200'/><node_position Node='-3784' Position='347,529,200,200'/><node_position Node='-3840' Position='346,326,200,200'/><node_position Node='-3872' Position='350,389,200,200'/><node_position Node='-3880' Position='350,599,200,200'/><node_position Node='-3895' Position='779,613,200,200'/><node_position Node='-3907' Position='1244,552,200,200'/><node_position Node='-132' Position='947,144,200,200'/><node_position Node='-148' Position='1559,327,200,200'/><node_position Node='-224' Position='1558,402,200,200'/><node_position Node='-189' Position='1571,488,200,200'/><node_position Node='-202' Position='1079,731,200,200'/><node_position Node='-1918' Position='966,905,200,200'/><node_position Node='-12762' Position='1892,183,200,200'/><node_position Node='-175' Position='1897,290,200,200'/><node_position Node='-196' Position='1878,390,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-12-17 13:41:10.019838] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-17 13:41:10.047963] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.050835] INFO: moduleinvoker: instruments.v2 运行完成[0.031013s].
[2021-12-17 13:41:10.078890] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-12-17 13:41:10.089799] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.095652] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.016764s].
[2021-12-17 13:41:10.114067] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-12-17 13:41:10.130478] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.133262] INFO: moduleinvoker: standardlize.v8 运行完成[0.019195s].
[2021-12-17 13:41:10.147002] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-17 13:41:10.160910] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.163654] INFO: moduleinvoker: input_features.v1 运行完成[0.016652s].
[2021-12-17 13:41:10.171936] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-17 13:41:10.181070] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.186509] INFO: moduleinvoker: input_features.v1 运行完成[0.014598s].
[2021-12-17 13:41:10.232296] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-17 13:41:10.243029] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.245883] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.013605s].
[2021-12-17 13:41:10.289758] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-17 13:41:10.303178] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.307069] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.017287s].
[2021-12-17 13:41:10.329599] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-12-17 13:41:10.343257] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.345980] INFO: moduleinvoker: standardlize.v8 运行完成[0.01638s].
[2021-12-17 13:41:10.404329] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-17 13:41:10.419571] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.423668] INFO: moduleinvoker: join.v3 运行完成[0.019339s].
[2021-12-17 13:41:10.470893] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-12-17 13:41:10.485634] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.492716] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.021825s].
[2021-12-17 13:41:10.529719] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-17 13:41:10.544806] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.547577] INFO: moduleinvoker: cached.v3 运行完成[0.017878s].
[2021-12-17 13:41:10.559985] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-17 13:41:10.571766] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.583208] INFO: moduleinvoker: instruments.v2 运行完成[0.023213s].
[2021-12-17 13:41:10.618318] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-17 13:41:10.630192] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:41:10.633091] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.014793s].
[2021-12-17 13:41:10.664706] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-17 13:41:57.649514] INFO: derived_feature_extractor: 提取完成 (high_0-low_0+high_1-low_1+high_2-low_2+high_3-low_3+high_4-low_4)/5, 0.029s
[2021-12-17 13:42:01.118079] INFO: derived_feature_extractor: /y_2018, 816987
[2021-12-17 13:42:06.256919] INFO: derived_feature_extractor: /y_2019, 884867
[2021-12-17 13:42:12.706755] INFO: derived_feature_extractor: /y_2020, 945961
[2021-12-17 13:42:18.801815] INFO: derived_feature_extractor: /y_2021, 991687
[2021-12-17 13:42:20.992448] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[70.327723s].
[2021-12-17 13:42:21.061437] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-12-17 13:44:19.253946] INFO: moduleinvoker: standardlize.v8 运行完成[118.192513s].
[2021-12-17 13:44:19.295398] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-12-17 13:49:38.398397] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[319.103011s].
[2021-12-17 13:49:38.488666] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-17 13:49:47.688661] INFO: moduleinvoker: cached.v3 运行完成[9.20001s].
[2021-12-17 13:49:58.826299] INFO: moduleinvoker: dl_layer_input.v1 运行完成[11.072541s].
[2021-12-17 13:49:59.013149] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.173208s].
[2021-12-17 13:49:59.048574] INFO: moduleinvoker: dl_layer_maxpooling1d.v1 运行完成[0.014697s].
[2021-12-17 13:49:59.088431] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.029029s].
[2021-12-17 13:49:59.125551] INFO: moduleinvoker: dl_layer_maxpooling1d.v1 运行完成[0.012192s].
[2021-12-17 13:49:59.152774] INFO: moduleinvoker: dl_layer_globalmaxpooling1d.v1 运行完成[0.00912s].
[2021-12-17 13:49:59.202818] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.020327s].
[2021-12-17 13:49:59.296438] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-17 13:49:59.317295] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:49:59.320845] INFO: moduleinvoker: cached.v3 运行完成[0.024438s].
[2021-12-17 13:49:59.326143] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.099393s].
[2021-12-17 13:49:59.349187] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2021-12-17 13:49:59.362352] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:49:59.368329] INFO: moduleinvoker: dl_model_train.v1 运行完成[0.019176s].
[2021-12-17 13:49:59.382532] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2021-12-17 13:50:34.926477] INFO: moduleinvoker: dl_model_predict.v1 运行完成[35.544012s].
[2021-12-17 13:50:34.989425] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-17 13:50:49.159582] INFO: moduleinvoker: cached.v3 运行完成[14.17016s].
[2021-12-17 13:50:49.207335] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-17 13:50:49.216062] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:50:49.218878] INFO: moduleinvoker: input_features.v1 运行完成[0.011546s].
[2021-12-17 13:50:49.247873] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2021-12-17 13:50:49.260407] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:50:49.263283] INFO: moduleinvoker: use_datasource.v1 运行完成[0.015429s].
[2021-12-17 13:50:49.275032] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-17 13:50:49.284400] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:50:49.287036] INFO: moduleinvoker: input_features.v1 运行完成[0.012014s].
[2021-12-17 13:50:49.407958] INFO: moduleinvoker: index_feature_extract.v3 开始运行..
[2021-12-17 13:50:49.433096] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:50:49.436198] INFO: moduleinvoker: index_feature_extract.v3 运行完成[0.028267s].
[2021-12-17 13:50:49.463445] INFO: moduleinvoker: select_columns.v3 开始运行..
[2021-12-17 13:50:49.476609] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:50:49.479669] INFO: moduleinvoker: select_columns.v3 运行完成[0.016236s].
[2021-12-17 13:50:49.497514] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-17 13:50:49.506206] INFO: moduleinvoker: 命中缓存
[2021-12-17 13:50:49.508907] INFO: moduleinvoker: join.v3 运行完成[0.011398s].
[2021-12-17 13:50:49.533488] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-17 13:51:06.618398] INFO: join: /data, 行数=3585523/3585523, 耗时=15.162916s
[2021-12-17 13:51:06.778829] INFO: join: 最终行数: 3585523
[2021-12-17 13:51:06.854880] INFO: moduleinvoker: join.v3 运行完成[17.321373s].
[2021-12-17 13:51:10.000374] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-12-17 13:51:10.009266] INFO: backtest: biglearning backtest:V8.6.0
[2021-12-17 13:53:23.821638] ERROR: moduleinvoker: module name: backtest, module version: v8, trackeback: NotImplementedError: Cannot convert a symbolic Tensor (lstm/strided_slice:0) to a numpy array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is not supported
[2021-12-17 13:53:23.878036] ERROR: moduleinvoker: module name: trade, module version: v4, trackeback: NotImplementedError: Cannot convert a symbolic Tensor (lstm/strided_slice:0) to a numpy array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is not supported
3502/3502 - 32s
DataSource(76a93c53cef8429182de0392bc52c613T)
2017-09-23
1023
958
65
date
3094 2017-09-25
3095 2017-09-26
3096 2017-09-27
3097 2017-09-28
3098 2017-09-29
... ...
4112 2021-12-06
4113 2021-12-07
4114 2021-12-08
4115 2021-12-09
4116 2021-12-10
[1023 rows x 1 columns]
2017-10-23
2017-12-29
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
<ipython-input-1-45432c3447b1> in <module>
720 )
721
--> 722 m37 = M.trade.v4(
723 instruments=m9.data,
724 options_data=m35.data,
<ipython-input-1-45432c3447b1> in m37_prepare_bigquant_run(context)
319 # 用于1个输入情况
320 lstm_input = Input(shape=(seq_len,len(fields)), name='lstm_input')
--> 321 lstm_output = LSTM(32,input_shape=(seq_len,len(fields)))(lstm_input)
322 Dense_output_1 = Dense(16, activation='linear')(lstm_output)
323 Dense_output_2 = Dense(4, activation='linear')(Dense_output_1)
NotImplementedError: Cannot convert a symbolic Tensor (lstm/strided_slice:0) to a numpy array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is not supported