{"description":"实验创建于2020/4/11","graph":{"edges":[{"to_node_id":"-526:instruments","from_node_id":"-513:data"},{"to_node_id":"-565:instruments","from_node_id":"-513:data"},{"to_node_id":"-526:features","from_node_id":"-521:data"},{"to_node_id":"-541:features","from_node_id":"-521:data"},{"to_node_id":"-548:features","from_node_id":"-521:data"},{"to_node_id":"-557:features","from_node_id":"-521:data"},{"to_node_id":"-334:features","from_node_id":"-521:data"},{"to_node_id":"-548:input_data","from_node_id":"-526:data"},{"to_node_id":"-541:instruments","from_node_id":"-532:data"},{"to_node_id":"-614:instruments","from_node_id":"-532:data"},{"to_node_id":"-4989:instruments","from_node_id":"-532:data"},{"to_node_id":"-557:input_data","from_node_id":"-541:data"},{"to_node_id":"-576:data2","from_node_id":"-548:data"},{"to_node_id":"-898:input_data","from_node_id":"-557:data"},{"to_node_id":"-576:data1","from_node_id":"-565:data"},{"to_node_id":"-590:input_data","from_node_id":"-576:data"},{"to_node_id":"-334:training_ds","from_node_id":"-590:data"},{"to_node_id":"-614:options_data","from_node_id":"-635:sorted_data"},{"to_node_id":"-5003:input_1","from_node_id":"-635:sorted_data"},{"to_node_id":"-635:input_ds","from_node_id":"-334:predictions"},{"to_node_id":"-334:predict_ds","from_node_id":"-898:data"},{"to_node_id":"-5003:input_2","from_node_id":"-4989:data"},{"to_node_id":"-4628:predictions","from_node_id":"-5003:data_1"}],"nodes":[{"node_id":"-513","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2014-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-513"}],"output_ports":[{"name":"data","node_id":"-513"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-521","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-521"}],"output_ports":[{"name":"data","node_id":"-521"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-526","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-526"},{"name":"features","node_id":"-526"}],"output_ports":[{"name":"data","node_id":"-526"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-532","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2017-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-532"}],"output_ports":[{"name":"data","node_id":"-532"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-541","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-541"},{"name":"features","node_id":"-541"}],"output_ports":[{"name":"data","node_id":"-541"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-548","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-548"},{"name":"features","node_id":"-548"}],"output_ports":[{"name":"data","node_id":"-548"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-557","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-557"},{"name":"features","node_id":"-557"}],"output_ports":[{"name":"data","node_id":"-557"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-565","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nwhere(shift(close, -5) / shift(open, -1)>1,1,0)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-565"}],"output_ports":[{"name":"data","node_id":"-565"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-576","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-576"},{"name":"data2","node_id":"-576"}],"output_ports":[{"name":"data","node_id":"-576"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-590","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-590"}],"output_ports":[{"name":"data","node_id":"-590"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-614","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-614"},{"name":"options_data","node_id":"-614"},{"name":"history_ds","node_id":"-614"},{"name":"benchmark_ds","node_id":"-614"},{"name":"trading_calendar","node_id":"-614"}],"output_ports":[{"name":"raw_perf","node_id":"-614"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-635","module_id":"BigQuantSpace.sort.sort-v4","parameters":[{"name":"sort_by","value":"pred_label","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-635"},{"name":"sort_by_ds","node_id":"-635"}],"output_ports":[{"name":"sorted_data","node_id":"-635"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-334","module_id":"BigQuantSpace.logistic_regression.logistic_regression-v1","parameters":[{"name":"penalty","value":"l2","type":"Literal","bound_global_parameter":null},{"name":"dual","value":"False","type":"Literal","bound_global_parameter":null},{"name":"fit_intercept","value":"True","type":"Literal","bound_global_parameter":null},{"name":"tol","value":0.0001,"type":"Literal","bound_global_parameter":null},{"name":"C","value":1,"type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"workers","value":1,"type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-334"},{"name":"features","node_id":"-334"},{"name":"model","node_id":"-334"},{"name":"predict_ds","node_id":"-334"}],"output_ports":[{"name":"output_model","node_id":"-334"},{"name":"predictions","node_id":"-334"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-898","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-898"}],"output_ports":[{"name":"data","node_id":"-898"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-4628","module_id":"BigQuantSpace.metrics_classification.metrics_classification-v1","parameters":[],"input_ports":[{"name":"predictions","node_id":"-4628"}],"output_ports":[{"name":"data","node_id":"-4628"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-4989","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nwhere(shift(close, -5) / shift(open, -1)>1,1,0)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-4989"}],"output_ports":[{"name":"data","node_id":"-4989"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-5003","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df_value = pd.merge(left=input_1.read(),right=input_2.read(),on=['date','instrument'],how='inner')\n return Outputs(data_1=DataSource.write_df(df_value))\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-5003"},{"name":"input_2","node_id":"-5003"},{"name":"input_3","node_id":"-5003"}],"output_ports":[{"name":"data_1","node_id":"-5003"},{"name":"data_2","node_id":"-5003"},{"name":"data_3","node_id":"-5003"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-513' Position='10,23,200,200'/><node_position Node='-521' Position='335,26,200,200'/><node_position Node='-526' Position='131,157,200,200'/><node_position Node='-532' Position='642,25,200,200'/><node_position Node='-541' Position='579,153,200,200'/><node_position Node='-548' Position='134,243,200,200'/><node_position Node='-557' Position='581,264,200,200'/><node_position Node='-565' Position='-160,159,200,200'/><node_position Node='-576' Position='-5,330,200,200'/><node_position Node='-590' Position='2,408,200,200'/><node_position Node='-614' Position='217.79428100585938,761.702880859375,200,200'/><node_position Node='-635' Position='423,572,200,200'/><node_position Node='-334' Position='348,479,200,200'/><node_position Node='-898' Position='578,359,200,200'/><node_position Node='-4628' Position='701.8399658203125,790.3085327148438,200,200'/><node_position Node='-4989' Position='934,396,200,200'/><node_position Node='-5003' Position='654.7828369140625,682.1600036621094,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-12-15 13:47:03.392554] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-15 13:47:03.939545] INFO: moduleinvoker: 命中缓存
[2021-12-15 13:47:03.951212] INFO: moduleinvoker: instruments.v2 运行完成[0.56332s].
[2021-12-15 13:47:03.978726] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-12-15 13:47:14.758746] INFO: 自动标注(股票): 加载历史数据: 2642813 行
[2021-12-15 13:47:14.760460] INFO: 自动标注(股票): 开始标注 ..
[2021-12-15 13:47:20.961756] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[16.983022s].
[2021-12-15 13:47:20.970520] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-15 13:47:20.983410] INFO: moduleinvoker: 命中缓存
[2021-12-15 13:47:20.986078] INFO: moduleinvoker: input_features.v1 运行完成[0.015546s].
[2021-12-15 13:47:21.020586] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-15 13:47:21.043388] INFO: moduleinvoker: 命中缓存
[2021-12-15 13:47:21.045968] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.025402s].
[2021-12-15 13:47:21.057404] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-15 13:47:31.356764] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.009s
[2021-12-15 13:47:31.367572] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.009s
[2021-12-15 13:47:31.373987] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.005s
[2021-12-15 13:47:31.380209] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.005s
[2021-12-15 13:47:31.388465] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.006s
[2021-12-15 13:47:31.396733] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.006s
[2021-12-15 13:47:32.040495] INFO: derived_feature_extractor: /y_2009, 95020
[2021-12-15 13:47:33.191498] INFO: derived_feature_extractor: /y_2010, 431567
[2021-12-15 13:47:34.714043] INFO: derived_feature_extractor: /y_2011, 511455
[2021-12-15 13:47:36.645740] INFO: derived_feature_extractor: /y_2012, 565675
[2021-12-15 13:47:38.404031] INFO: derived_feature_extractor: /y_2013, 564168
[2021-12-15 13:47:40.112002] INFO: derived_feature_extractor: /y_2014, 569948
[2021-12-15 13:47:41.026856] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[19.96943s].
[2021-12-15 13:47:41.042825] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-15 13:47:47.445311] INFO: join: /y_2009, 行数=0/95020, 耗时=1.123534s
[2021-12-15 13:47:49.857294] INFO: join: /y_2010, 行数=431045/431567, 耗时=2.409524s
[2021-12-15 13:47:52.467743] INFO: join: /y_2011, 行数=510937/511455, 耗时=2.606132s
[2021-12-15 13:47:55.174458] INFO: join: /y_2012, 行数=564597/565675, 耗时=2.702103s
[2021-12-15 13:47:58.104186] INFO: join: /y_2013, 行数=563157/564168, 耗时=2.923916s
[2021-12-15 13:48:00.856010] INFO: join: /y_2014, 行数=568076/569948, 耗时=2.744418s
[2021-12-15 13:48:00.957710] INFO: join: 最终行数: 2637812
[2021-12-15 13:48:00.979140] INFO: moduleinvoker: join.v3 运行完成[19.936307s].
[2021-12-15 13:48:00.991465] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-12-15 13:48:01.132904] INFO: dropnan: /y_2009, 0/0
[2021-12-15 13:48:01.903848] INFO: dropnan: /y_2010, 423756/431045
[2021-12-15 13:48:02.925359] INFO: dropnan: /y_2011, 504741/510937
[2021-12-15 13:48:04.002815] INFO: dropnan: /y_2012, 561124/564597
[2021-12-15 13:48:05.129172] INFO: dropnan: /y_2013, 563127/563157
[2021-12-15 13:48:06.213321] INFO: dropnan: /y_2014, 566227/568076
[2021-12-15 13:48:06.435232] INFO: dropnan: 行数: 2618975/2637812
[2021-12-15 13:48:06.447096] INFO: moduleinvoker: dropnan.v1 运行完成[5.455618s].
[2021-12-15 13:48:06.453921] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-15 13:48:06.461938] INFO: moduleinvoker: 命中缓存
[2021-12-15 13:48:06.463475] INFO: moduleinvoker: instruments.v2 运行完成[0.009562s].
[2021-12-15 13:48:06.480124] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-15 13:48:06.490729] INFO: moduleinvoker: 命中缓存
[2021-12-15 13:48:06.492648] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012522s].
[2021-12-15 13:48:06.517251] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-15 13:48:09.706616] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.006s
[2021-12-15 13:48:09.714885] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.006s
[2021-12-15 13:48:09.720338] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.004s
[2021-12-15 13:48:09.726306] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.003s
[2021-12-15 13:48:09.730493] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.003s
[2021-12-15 13:48:09.734568] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.003s
[2021-12-15 13:48:10.257190] INFO: derived_feature_extractor: /y_2014, 141569
[2021-12-15 13:48:11.604879] INFO: derived_feature_extractor: /y_2015, 569698
[2021-12-15 13:48:13.502961] INFO: derived_feature_extractor: /y_2016, 641546
[2021-12-15 13:48:14.254052] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[7.736797s].
[2021-12-15 13:48:14.269751] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-12-15 13:48:14.735748] INFO: dropnan: /y_2014, 140747/141569
[2021-12-15 13:48:15.734040] INFO: dropnan: /y_2015, 565146/569698
[2021-12-15 13:48:16.786303] INFO: dropnan: /y_2016, 636912/641546
[2021-12-15 13:48:16.942971] INFO: dropnan: 行数: 1342805/1352813
[2021-12-15 13:48:16.953486] INFO: moduleinvoker: dropnan.v1 运行完成[2.683725s].
[2021-12-15 13:48:16.966581] INFO: moduleinvoker: logistic_regression.v1 开始运行..
[2021-12-15 13:48:41.072008] INFO: moduleinvoker: logistic_regression.v1 运行完成[24.105428s].
[2021-12-15 13:48:41.085438] INFO: moduleinvoker: sort.v4 开始运行..
[2021-12-15 13:48:44.415041] INFO: moduleinvoker: sort.v4 运行完成[3.329593s].
[2021-12-15 13:48:44.436425] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-12-15 13:48:45.776782] INFO: 自动标注(股票): 加载历史数据: 1211244 行
[2021-12-15 13:48:45.778323] INFO: 自动标注(股票): 开始标注 ..
[2021-12-15 13:48:48.153944] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[3.717525s].
[2021-12-15 13:48:48.205517] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-15 13:48:51.092157] INFO: moduleinvoker: cached.v3 运行完成[2.886655s].
[2021-12-15 13:48:51.119841] INFO: moduleinvoker: metrics_classification.v1 开始运行..
[2021-12-15 13:49:03.410040] INFO: moduleinvoker: metrics_classification.v1 运行完成[12.29017s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9b0e84bcb251412aaf536b2e974085e0"}/bigcharts-data-end