{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-580:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-587:input_data","from_node_id":"-580:data"},{"to_node_id":"-55:input_1","from_node_id":"-587:data"},{"to_node_id":"-587:features","from_node_id":"-635:data"},{"to_node_id":"-580:features","from_node_id":"-635:data"},{"to_node_id":"-74:input_data","from_node_id":"-55:data"},{"to_node_id":"-74:features","from_node_id":"-82:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"002978.SZA\n000001.SZA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-580","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-580"},{"name":"features","node_id":"-580"}],"output_ports":[{"name":"data","node_id":"-580"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-587","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-587"},{"name":"features","node_id":"-587"}],"output_ports":[{"name":"data","node_id":"-587"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-635","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nclose=close_0/adjust_factor_0\nopen=open_0/adjust_factor_0\nhigh=high_0/adjust_factor_0\nlow=low_0/adjust_factor_0\namount=amount_0\nvolume=volume_0\n\n\n\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-635"}],"output_ports":[{"name":"data","node_id":"-635"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-55","module_id":"BigQuantSpace.resample_df.resample_df-v15","parameters":[{"name":"columns","value":"[\"open\", \"high\", \"low\", \"close\",'volume','amount']","type":"Literal","bound_global_parameter":null},{"name":"resample_period","value":"M","type":"Literal","bound_global_parameter":null},{"name":"how_key","value":"{'date': 'last',\n 'volume': 'sum',\n 'amount': 'sum',\n 'close': 'last',\n 'high': 'max',\n 'low': 'min',\n 'open': 'first'}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-55"}],"output_ports":[{"name":"data","node_id":"-55"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-74","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-74"},{"name":"features","node_id":"-74"}],"output_ports":[{"name":"data","node_id":"-74"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-82","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nta_kdj(high, low, close, 9, 3, 3, 'golden_cross')#,#随机指标,金叉\n\n\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-82"}],"output_ports":[{"name":"data","node_id":"-82"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211.81076049804688,17.77893829345703,200,200'/><node_position Node='-580' Position='377.8346862792969,141.81874084472656,200,200'/><node_position Node='-587' Position='368.45074462890625,217.20240783691406,200,200'/><node_position Node='-635' Position='577.67724609375,54.16533660888672,200,200'/><node_position Node='-55' Position='400.7041320800781,312.5941925048828,200,200'/><node_position Node='-74' Position='606.4066162109375,401.62249755859375,200,200'/><node_position Node='-82' Position='722.1513061523438,168.4739532470703,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-01-03 14:25:35.014712] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-01-03 14:25:35.026613] INFO: moduleinvoker: 命中缓存
[2022-01-03 14:25:35.028193] INFO: moduleinvoker: instruments.v2 运行完成[0.013486s].
[2022-01-03 14:25:35.038136] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-01-03 14:25:35.055346] INFO: moduleinvoker: 命中缓存
[2022-01-03 14:25:35.057017] INFO: moduleinvoker: input_features.v1 运行完成[0.018906s].
[2022-01-03 14:25:35.127392] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-01-03 14:25:35.138423] INFO: moduleinvoker: 命中缓存
[2022-01-03 14:25:35.140262] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012889s].
[2022-01-03 14:25:35.152061] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-01-03 14:25:35.162974] INFO: moduleinvoker: 命中缓存
[2022-01-03 14:25:35.167540] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.015464s].
[2022-01-03 14:25:35.195146] INFO: moduleinvoker: resample_df.v15 开始运行..
[2022-01-03 14:25:35.206220] INFO: moduleinvoker: 命中缓存
[2022-01-03 14:25:35.207658] INFO: moduleinvoker: resample_df.v15 运行完成[0.012547s].
[2022-01-03 14:25:35.212454] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-01-03 14:25:35.219320] INFO: moduleinvoker: 命中缓存
[2022-01-03 14:25:35.220648] INFO: moduleinvoker: input_features.v1 运行完成[0.008193s].
[2022-01-03 14:25:35.233495] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-01-03 14:25:35.241469] INFO: moduleinvoker: 命中缓存
[2022-01-03 14:25:35.242933] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.009442s].