{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-690:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-967:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-1291:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-4929:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-4953:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-5756:input_1","from_node_id":"-129:data"},{"to_node_id":"-690:training_ds","from_node_id":"-47836:data"},{"to_node_id":"-690:predict_ds","from_node_id":"-47840:data"},{"to_node_id":"-1291:options_data","from_node_id":"-690:predictions"},{"to_node_id":"-4929:options_data","from_node_id":"-690:predictions"},{"to_node_id":"-4953:options_data","from_node_id":"-690:predictions"},{"to_node_id":"-47836:input_data","from_node_id":"-967:data_1"},{"to_node_id":"-47840:input_data","from_node_id":"-5756:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-05-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-02-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"return_0\nreturn_5\nrank_return_0\nrank_return_5\nrank_return_20\nrank_return_0/rank_return_20\nrank_return_5/rank_return_20\nrank_amount_5/rank_amount_20\nrank_turn_5/rank_turn_20\navg_turn_5\nturn_20\navg_turn_5/turn_20\n\nshift(close_0,20)/shift(close_0, 30)\nshift(close_0,20)/shift(close_0, 35)\nshift(close_0,20)/shift(close_0, 40)\ndelta(rank_return_0, 20)\navg_turn_3/((turn_18+turn_19+turn_20)/3)\n\n\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-02-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2023-03-20","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"90","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"90","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-47836","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-47836"},{"name":"features","node_id":"-47836"}],"output_ports":[{"name":"data","node_id":"-47836"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-47840","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-47840"},{"name":"features","node_id":"-47840"}],"output_ports":[{"name":"data","node_id":"-47840"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-690","module_id":"BigQuantSpace.lightgbm.lightgbm-v2","parameters":[{"name":"num_boost_round","value":"79","type":"Literal","bound_global_parameter":null},{"name":"objective","value":"排序(ndcg)","type":"Literal","bound_global_parameter":null},{"name":"num_class","value":"1","type":"Literal","bound_global_parameter":null},{"name":"num_leaves","value":"60","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"min_data_in_leaf","value":"900","type":"Literal","bound_global_parameter":null},{"name":"max_bin","value":"1023","type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"group_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"random_seed","value":"101","type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{'n_jobs':4,'label_gain':','.join([str(x) for x in range(20)]),\"max_position\":29,\"eval_at\":\"1,3,5,10\"}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-690"},{"name":"features","node_id":"-690"},{"name":"model","node_id":"-690"},{"name":"predict_ds","node_id":"-690"}],"output_ports":[{"name":"output_model","node_id":"-690"},{"name":"predictions","node_id":"-690"},{"name":"feature_gains","node_id":"-690"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-967","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n ins = m1.data.read_pickle()['instruments']\n start = m1.data.read_pickle()['start_date']\n end = m1.data.read_pickle()['end_date']\n \n df1 = D.features(ins,start,end,fields=['rank_turn_0','rank_amount_0','st_status_0'])\n df_final = pd.merge(df,df1,on=['date','instrument'])\n df_final = df_final[df_final['instrument'].str.startswith(\"68\") == False]\n df_final = df_final[df_final['instrument'].str.startswith(\"8\") == False]\n df_final = df_final[df_final['instrument'].str.startswith(\"4\") == False]\n\n df_final = df_final[df_final[\"st_status_0\"] == 0]\n df_final = df_final[df_final['rank_turn_0'] >= 0.9]\n df_final = df_final[df_final['rank_amount_0'] >= 0.85]\n print(\"用于训练的样本总个数为\",len(df_final))\n print(df_final.iloc[0])\n data_1 = DataSource.write_df(df_final)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-967"},{"name":"input_2","node_id":"-967"},{"name":"input_3","node_id":"-967"}],"output_ports":[{"name":"data_1","node_id":"-967"},{"name":"data_2","node_id":"-967"},{"name":"data_3","node_id":"-967"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-5756","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n ins = m9.data.read_pickle()['instruments']\n start = m9.data.read_pickle()['start_date']\n end = m9.data.read_pickle()['end_date']\n \n df1 = D.features(ins,start,end,fields=['rank_turn_0','rank_amount_0','st_status_0'])\n df_final = pd.merge(df,df1,on=['date','instrument'])\n df_final = df_final[df_final['instrument'].str.startswith(\"68\") == False]\n df_final = df_final[df_final['instrument'].str.startswith(\"8\") == False]\n df_final = df_final[df_final['instrument'].str.startswith(\"4\") == False]\n \n df_final = df_final[df_final[\"st_status_0\"] == 0]\n df_final = df_final[df_final['rank_turn_0'] >= 0.9]\n df_final = df_final[df_final['rank_amount_0'] >= 0.85]\n print(\"用于回测的样本总个数为\",len(df_final))\n data_1 = DataSource.write_df(df_final)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-5756"},{"name":"input_2","node_id":"-5756"},{"name":"input_3","node_id":"-5756"}],"output_ports":[{"name":"data_1","node_id":"-5756"},{"name":"data_2","node_id":"-5756"},{"name":"data_3","node_id":"-5756"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-1291","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [1 / stock_count for i in range(0, stock_count)]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n tmp = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n instruments = equities\n# # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n# if instrument in tmp:\n# print(\"涨停,不卖出\",instrument)\n# continue\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n \n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1291"},{"name":"options_data","node_id":"-1291"},{"name":"history_ds","node_id":"-1291"},{"name":"benchmark_ds","node_id":"-1291"},{"name":"trading_calendar","node_id":"-1291"}],"output_ports":[{"name":"raw_perf","node_id":"-1291"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-4929","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [1 / stock_count for i in range(0, stock_count)]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 1\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n tmp = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n instruments = equities\n# # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n# if instrument in tmp:\n# print(\"涨停,不卖出\",instrument)\n# continue\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n \n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-4929"},{"name":"options_data","node_id":"-4929"},{"name":"history_ds","node_id":"-4929"},{"name":"benchmark_ds","node_id":"-4929"},{"name":"trading_calendar","node_id":"-4929"}],"output_ports":[{"name":"raw_perf","node_id":"-4929"}],"cacheable":false,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-4953","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [1 / stock_count for i in range(0, stock_count)]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.5\n context.options['hold_days'] = 1\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n tmp = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n instruments = equities\n# # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n# if instrument in tmp:\n# print(\"涨停,不卖出\",instrument)\n# continue\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n \n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-4953"},{"name":"options_data","node_id":"-4953"},{"name":"history_ds","node_id":"-4953"},{"name":"benchmark_ds","node_id":"-4953"},{"name":"trading_calendar","node_id":"-4953"}],"output_ports":[{"name":"raw_perf","node_id":"-4953"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='367,90,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='219,184,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='706,-22,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='413,354,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1075,123,200,200'/><node_position Node='-106' Position='530,189,200,200'/><node_position Node='-113' Position='534,281,200,200'/><node_position Node='-122' Position='1078,236,200,200'/><node_position Node='-129' Position='1081,327,200,200'/><node_position Node='-47836' Position='485,547,200,200'/><node_position Node='-47840' Position='1080,528,200,200'/><node_position Node='-690' Position='727,628,200,200'/><node_position Node='-967' Position='449,445,200,200'/><node_position Node='-5756' Position='1095,419,200,200'/><node_position Node='-1291' Position='755,725,200,200'/><node_position Node='-4929' Position='752.832763671875,820.8912353515625,200,200'/><node_position Node='-4953' Position='750.6654663085938,904.0584716796875,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-03-17 18:43:00.444773] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-03-17 18:43:00.458468] INFO: moduleinvoker: 命中缓存
[2023-03-17 18:43:00.462575] INFO: moduleinvoker: instruments.v2 运行完成[0.017788s].
[2023-03-17 18:43:00.481828] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2023-03-17 18:43:00.494229] INFO: moduleinvoker: 命中缓存
[2023-03-17 18:43:00.498216] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.016376s].
[2023-03-17 18:43:00.505283] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-03-17 18:43:00.515261] INFO: moduleinvoker: 命中缓存
[2023-03-17 18:43:00.517934] INFO: moduleinvoker: input_features.v1 运行完成[0.012663s].
[2023-03-17 18:43:00.544169] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-03-17 18:43:00.564319] INFO: moduleinvoker: 命中缓存
[2023-03-17 18:43:00.566200] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.022075s].
[2023-03-17 18:43:00.574239] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-03-17 18:43:00.580075] INFO: moduleinvoker: 命中缓存
[2023-03-17 18:43:00.585434] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.011175s].
[2023-03-17 18:43:00.604557] INFO: moduleinvoker: join.v3 开始运行..
[2023-03-17 18:43:00.616316] INFO: moduleinvoker: 命中缓存
[2023-03-17 18:43:00.618666] INFO: moduleinvoker: join.v3 运行完成[0.014122s].
[2023-03-17 18:43:00.634571] INFO: moduleinvoker: cached.v3 开始运行..
[2023-03-17 18:43:00.646068] INFO: moduleinvoker: 命中缓存
[2023-03-17 18:43:00.647831] INFO: moduleinvoker: cached.v3 运行完成[0.013264s].
[2023-03-17 18:43:00.655916] INFO: moduleinvoker: dropnan.v2 开始运行..
[2023-03-17 18:43:00.661765] INFO: moduleinvoker: 命中缓存
[2023-03-17 18:43:00.663094] INFO: moduleinvoker: dropnan.v2 运行完成[0.007175s].
[2023-03-17 18:43:00.667931] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-03-17 18:43:00.743903] INFO: moduleinvoker: instruments.v2 运行完成[0.075939s].
[2023-03-17 18:43:00.760278] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-03-17 18:43:02.528390] INFO: 基础特征抽取: 年份 2021, 特征行数=198486
[2023-03-17 18:43:08.797907] INFO: 基础特征抽取: 年份 2022, 特征行数=1171038
[2023-03-17 18:43:10.218720] INFO: 基础特征抽取: 年份 2023, 特征行数=248959
[2023-03-17 18:43:10.419762] INFO: 基础特征抽取: 总行数: 1618483
[2023-03-17 18:43:10.429949] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[9.669665s].
[2023-03-17 18:43:10.482912] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-03-17 18:43:14.979840] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_20, 0.004s
[2023-03-17 18:43:14.984779] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_20, 0.003s
[2023-03-17 18:43:14.989094] INFO: derived_feature_extractor: 提取完成 rank_amount_5/rank_amount_20, 0.003s
[2023-03-17 18:43:14.993820] INFO: derived_feature_extractor: 提取完成 rank_turn_5/rank_turn_20, 0.003s
[2023-03-17 18:43:15.466267] INFO: derived_feature_extractor: 提取完成 shift(close_0,20)/shift(close_0, 30), 0.469s
[2023-03-17 18:43:15.994703] INFO: derived_feature_extractor: 提取完成 shift(close_0,20)/shift(close_0, 35), 0.527s
[2023-03-17 18:43:16.494040] INFO: derived_feature_extractor: 提取完成 shift(close_0,20)/shift(close_0, 40), 0.497s
[2023-03-17 18:43:16.789034] INFO: derived_feature_extractor: 提取完成 delta(rank_return_0, 20), 0.292s
[2023-03-17 18:43:16.794546] INFO: derived_feature_extractor: 提取完成 avg_turn_5/turn_20, 0.003s
[2023-03-17 18:43:16.800965] INFO: derived_feature_extractor: 提取完成 avg_turn_3/((turn_18+turn_19+turn_20)/3), 0.005s
[2023-03-17 18:43:18.209247] INFO: derived_feature_extractor: /y_2021, 198486
[2023-03-17 18:43:21.367958] INFO: derived_feature_extractor: /y_2022, 1171038
[2023-03-17 18:43:23.305812] INFO: derived_feature_extractor: /y_2023, 248959
[2023-03-17 18:43:23.910574] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[13.427648s].
[2023-03-17 18:43:23.954845] INFO: moduleinvoker: cached.v3 开始运行..
[2023-03-17 18:43:36.651526] INFO: moduleinvoker: cached.v3 运行完成[12.696674s].
[2023-03-17 18:43:36.721710] INFO: moduleinvoker: dropnan.v2 开始运行..
[2023-03-17 18:43:37.242446] INFO: dropnan: /data, 52106/54639
[2023-03-17 18:43:37.331725] INFO: dropnan: 行数: 52106/54639
[2023-03-17 18:43:37.346211] INFO: moduleinvoker: dropnan.v2 运行完成[0.624479s].
[2023-03-17 18:43:37.362356] INFO: moduleinvoker: lightgbm.v2 开始运行..
[2023-03-17 18:43:38.494262] INFO: moduleinvoker: lightgbm.v2 运行完成[1.131907s].
[2023-03-17 18:43:38.610779] INFO: moduleinvoker: backtest.v8 开始运行..
[2023-03-17 18:43:38.622111] INFO: backtest: biglearning backtest:V8.6.3
[2023-03-17 18:43:38.624685] INFO: backtest: product_type:stock by specified
[2023-03-17 18:43:50.929776] INFO: backtest: 读取股票行情完成:2672882
[2023-03-17 18:43:50.978420] INFO: backtest: algo history_data=None
[2023-03-17 18:43:50.981071] INFO: algo: TradingAlgorithm V1.8.9
[2023-03-17 18:43:51.902663] INFO: algo: trading transform...
[2023-03-17 18:43:56.419345] INFO: Performance: Simulated 273 trading days out of 273.
[2023-03-17 18:43:56.421720] INFO: Performance: first open: 2022-02-07 09:30:00+00:00
[2023-03-17 18:43:56.425045] INFO: Performance: last close: 2023-03-20 15:00:00+00:00
[2023-03-17 18:44:05.095905] INFO: moduleinvoker: backtest.v8 运行完成[26.485131s].
[2023-03-17 18:44:05.097895] INFO: moduleinvoker: trade.v4 运行完成[26.582447s].
[2023-03-17 18:44:05.202995] INFO: moduleinvoker: backtest.v8 开始运行..
[2023-03-17 18:44:05.209477] INFO: backtest: biglearning backtest:V8.6.3
[2023-03-17 18:44:05.211914] INFO: backtest: product_type:stock by specified
[2023-03-17 18:44:15.965566] INFO: backtest: 读取股票行情完成:2672882
[2023-03-17 18:44:16.001675] INFO: backtest: algo history_data=None
[2023-03-17 18:44:16.003288] INFO: algo: TradingAlgorithm V1.8.9
[2023-03-17 18:44:16.693801] INFO: algo: trading transform...
[2023-03-17 18:44:20.501931] INFO: Performance: Simulated 273 trading days out of 273.
[2023-03-17 18:44:20.504532] INFO: Performance: first open: 2022-02-07 09:30:00+00:00
[2023-03-17 18:44:20.510129] INFO: Performance: last close: 2023-03-20 15:00:00+00:00
[2023-03-17 18:44:25.873069] INFO: moduleinvoker: backtest.v8 运行完成[20.67007s].
[2023-03-17 18:44:25.875765] INFO: moduleinvoker: trade.v4 运行完成[20.750912s].
[2023-03-17 18:44:25.969376] INFO: moduleinvoker: backtest.v8 开始运行..
[2023-03-17 18:44:25.983039] INFO: backtest: biglearning backtest:V8.6.3
[2023-03-17 18:44:25.985801] INFO: backtest: product_type:stock by specified
[2023-03-17 18:44:36.462573] INFO: backtest: 读取股票行情完成:2672882
[2023-03-17 18:44:36.506465] INFO: backtest: algo history_data=None
[2023-03-17 18:44:36.509484] INFO: algo: TradingAlgorithm V1.8.9
[2023-03-17 18:44:37.362306] INFO: algo: trading transform...
[2023-03-17 18:44:41.567187] INFO: Performance: Simulated 273 trading days out of 273.
[2023-03-17 18:44:41.570871] INFO: Performance: first open: 2022-02-07 09:30:00+00:00
[2023-03-17 18:44:41.573373] INFO: Performance: last close: 2023-03-20 15:00:00+00:00
[2023-03-17 18:44:47.050154] INFO: moduleinvoker: backtest.v8 运行完成[21.080787s].
[2023-03-17 18:44:47.052443] INFO: moduleinvoker: trade.v4 运行完成[21.167496s].
- 收益率153.92%
- 年化收益率136.36%
- 基准收益率-13.26%
- 阿尔法1.7
- 贝塔0.64
- 夏普比率2.36
- 胜率0.54
- 盈亏比1.36
- 收益波动率38.23%
- 信息比率0.18
- 最大回撤14.95%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-7990c03893114537b35d064fde78ff6e"}/bigcharts-data-end
- 收益率179.67%
- 年化收益率158.39%
- 基准收益率-13.26%
- 阿尔法2.13
- 贝塔0.62
- 夏普比率2.02
- 胜率0.54
- 盈亏比1.23
- 收益波动率52.17%
- 信息比率0.15
- 最大回撤28.34%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-ed4be2cbd29b4cbaa99a47f93f73852e"}/bigcharts-data-end
- 收益率162.0%
- 年化收益率143.29%
- 基准收益率-13.26%
- 阿尔法1.91
- 贝塔0.71
- 夏普比率2.07
- 胜率0.53
- 盈亏比1.23
- 收益波动率46.8%
- 信息比率0.16
- 最大回撤26.04%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-89d9d26439d849eea058959b2c9580d4"}/bigcharts-data-end