资金流动量追涨策略,牛市策略
资金流动性充足,小盘股活跃,题材快速轮动阶段
存量资金萎缩;无市场增量资金入场,大盘持续缩量,连续下跌; 中小市值股票失血严重阶段
样例因子 通过协方差和数据相关性统计---机器学习挖掘 -23个因子 寻找一些传统 通达信,同花顺 东方财富的选股指标 将上述整合成 特征因子表达式,进行样本数据筛选
# 本代码由可视化策略环境自动生成 2023年2月10日 16:13
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m4_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
df = input_1.read_pickle()
feature_len = len(input_2.read_pickle())
df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))
data_1 = DataSource.write_pickle(df)
return Outputs(data_1=data_1)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m4_post_run_bigquant_run(outputs):
return outputs
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m8_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
df = input_1.read_pickle()
feature_len = len(input_2.read_pickle())
df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))
data_1 = DataSource.write_pickle(df)
return Outputs(data_1=data_1)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m8_post_run_bigquant_run(outputs):
return outputs
# 用户的自定义层需要写到字典中,比如
# {
# "MyLayer": MyLayer
# }
m5_custom_objects_bigquant_run = {
}
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m24_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
pred_label = input_1.read_pickle()
df = input_2.read_df()
df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m24_post_run_bigquant_run(outputs):
return outputs
# 回测引擎:初始化函数,只执行一次
def m39_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
# 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
# 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
stock_count = 1
# 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
context.stock_weights = [1]
# 设置每只股票占用的最大资金比例
context.max_cash_per_instrument = 1
context.options['hold_days'] = 1
# 回测引擎:每日数据处理函数,每天执行一次
def m39_handle_data_bigquant_run(context, data):
# 获取当前持仓
positions = {e.symbol: p.amount * p.last_sale_price
for e, p in context.portfolio.positions.items()}
today = data.current_dt.strftime('%Y-%m-%d')
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == today]
# try:
# #大盘风控模块,读取风控数据
# benckmark_risk=ranker_prediction['bm_0'].values[0]
# if benckmark_risk > 0:
# for instrument in positions.keys():
# context.order_target(context.symbol(instrument), 0)
# print(today,'大盘风控止损触发,全仓卖出')
# return
# except:
# print('--!')
#当risk为1时,市场有风险,全部平仓,不再执行其它操作
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
#cash_for_buy = min(context.portfolio.portfolio_value/2,context.portfolio.cash)
#cash_for_buy = context.portfolio.portfolio_value
#print(ranker_prediction)
#cash_for_buy = context.portfolio.portfolio_value
cash_for_buy = context.portfolio.cash
buy_instruments = list(ranker_prediction.instrument)
sell_instruments = [instrument.symbol for instrument in context.portfolio.positions.keys()]
to_buy = set(buy_instruments[:1]) - set(sell_instruments)
to_sell = set(sell_instruments) - set(buy_instruments[:1])
for instrument in to_sell:
context.order_target(context.symbol(instrument), 0)
for instrument in to_buy:
context.order_value(context.symbol(instrument), cash_for_buy)
def m39_prepare_bigquant_run(context):
# 获取st状态和涨跌停状态
context.status_df = D.features(instruments =context.instruments,start_date = context.start_date, end_date = context.end_date,
fields=['st_status_0','price_limit_status_0','price_limit_status_1'])
def m39_before_trading_start_bigquant_run(context, data):
pass
# # 获取涨跌停状态数据
# df_price_limit_status=context.status_df.set_index('date')
# today=data.current_dt.strftime('%Y-%m-%d')
# # 得到当前未完成订单
# for orders in get_open_orders().values():
# # 循环,撤销订单
# for _order in orders:
# ins=str(_order.sid.symbol)
# try:
# #判断一下如果当日涨停,则取消卖单
# if df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.loc[today]>2 and _order.amount<0:
# cancel_order(_order)
# print(today,'尾盘涨停取消卖单',ins)
# except:
# continue
m1 = M.instruments.v2(
start_date='2013-02-01',
end_date='2019-10-30',
market='CN_STOCK_A',
instrument_list=' ',
max_count=0
)
m21 = M.use_datasource.v1(
instruments=m1.data,
datasource_id='net_amount_CN_STOCK_A',
start_date='',
end_date=''
)
m22 = M.filter.v3(
input_data=m21.data,
expr='mf_net_amount_l>8000000',
output_left_data=False
)
m23 = M.select_columns.v3(
input_ds=m22.data,
columns='date,instrument',
reverse_select=False
)
m20 = M.use_datasource.v1(
instruments=m1.data,
datasource_id='bar1d_CN_STOCK_A',
start_date='',
end_date=''
)
m29 = M.join.v3(
data1=m20.data,
data2=m23.data,
on='date,instrument',
how='inner',
sort=False
)
m31 = M.auto_labeler_on_datasource.v1(
input_data=m29.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
#shift(close, -5) / shift(open, -1)
# 极值处理:用1%和99%分位的值做clip
#clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 将分数映射到分类,这里使用20个分类
#all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
#where(shift(high, -1) == shift(low, -1), NaN, label)
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(high, -3) / shift(open, -1)-1
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
#where(label>0.5, NaN, label)
#where(label<-0.5, NaN, label)
""",
drop_na_label=True,
cast_label_int=False,
date_col='date',
instrument_col='instrument'
)
m3 = M.input_features.v1(
features="""return_5/return_20#43: 5天的收益率/20天的收益率
rank_amount_5#45:最近5日的成交额排名
avg_turn_10#46:平均10天的换手率
market_cap_float_0<280000000000#47:流通市值<280亿
pe_ttm_0>0#48:ttm pe市盈率要大于0
pb_lf_0#49:市净率
sum(mf_net_pct_main_0>0.12,30)>11#50:统计30天内主力流入占比大于12%的天数
fs_roa_ttm_0>5#51:总资产报酬率roa要大于5
fs_cash_ratio_0#52:现金流量
close_0>ts_max(close_0,56)#53:当日收盘价破 56天最高价(创新高)
ta_sma_10_0/ta_sma_30_0#56: 10天的sma线/30天的sma线
ta_sar_0# 58:SAR抛物线指标
swing_volatility_10_0/swing_volatility_60_0 #59: 10天的波动率/60天的波动率
ta_cci_14_0 #60:CCI -14天的指标
rank_return_3 #61: 3天收益率的 排名
mf_net_amount_0>mf_net_amount_1 #62: 判断 当日的资金流入净额>昨日资金流入净额
mf_net_amount_xl_0>mean(mf_net_amount_xl_0, 30)# 64:当天的超大单流入净量>平均30天内的超大单流入净量(30天超大单MA线)
cond4= (close_0-close_1)/close_1 >0.05# 65:当天涨幅>5%
(close_0-close_30)/close_30>1.25# 66:30天内的涨幅大于125%
(close_0-close_5)/close_5>1.16# 67:5天内的涨幅>116%
list_days_0>365# 68:上市天数>365天
ta_bbands_middleband_28_0 #69:布林带28天均线
cond28=sum(price_limit_status_0==3,80)>5 #70:统计80天内 涨停板的次数大于5"""
)
m25 = M.input_features.v1(
features_ds=m3.data,
features="""
# #号开始的表示注释,注释需单独一行
# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
#st_status_0
#price_limit_status_0
#price_limit_status_1
#open_0
#close_0
#st_status_0
#fac2=where((open_0/high_0<0.97)&(high_0/close_0<1.04), 1,0)#(open_0/high_0<0.97)&(high_0/close_0<1.04)
#cond15=where(st_status_0==0,1,0)
#cond16=volume_0>volume_1
#cond17=ta_ma(close_0,5,derive='long')
#cond18=ta_trix(close_0, derive='long')
#fs_roe_ttm_0>5
#pe_ttm_0>0
#market_cap_float_0< 20000000000
#open_0
#close_0
#volume_2
#volume_0
#volume_1
#cond19=((volume_2/volume_1<2.5)|(high_0/close_0 <1.05))&(volume_2/volume_0>1)
#open_price/high_price<1) and (high_price/close_price<1.03)
#cond22=(open_0/high_0<0.97)&(high_0/close_0<1.04)
#close_0>open_0
#some321=ta_trix(close_0, derive='long')
#some321=ta_trix(close_1, derive='long')#新加的--可删除
#some321=ta_trix(close_2, derive='long')#新加的--可删除
#some321=ta_trix(close_3, derive='long')#新加的--可删除
#some321=ta_trix(close_4, derive='long')#新加的--可删除
#some456=ta_dma(close_0, 'long')#新加的,可删除
#some456=ta_dma(close_1, 'long')#新加的,可删除
#some456=ta_dma(close_2, 'long')#新加的,可删除
#cond30=mf_net_amount_main_0>0.1
open_1
close_1
close_0
high_1
open_0
low_0
price_limit_status_0
volume_0
open_0/close_1
cond3=low_0 > mean(close_0,20)
#(今日收盘价-昨日收盘价)/昨日收盘价*100%
cond1=ta_trix(close_0, derive='long')
cond2=ta_dma(close_0, 'long')
#----当日最低价 站稳60日线
cond3=low_0 > mean(close_0,20)
#(今日收盘价-昨日收盘价)/昨日收盘价*100%
cond4= (close_0-close_1)/close_1 >0.04
cond5=close_0>open_0
cond6=st_status_0==0
cond7=ta_macd(close_0,'long')
cond8=ta_ma(close_0,5, derive='long')"""
)
m15 = M.general_feature_extractor.v7(
instruments=m1.data,
features=m25.data,
start_date='',
end_date='',
before_start_days=58
)
m16 = M.derived_feature_extractor.v3(
input_data=m15.data,
features=m25.data,
date_col='date',
instrument_col='instrument',
drop_na=True,
remove_extra_columns=False
)
m7 = M.join.v3(
data1=m31.data,
data2=m16.data,
on='date,instrument',
how='inner',
sort=False
)
m2 = M.filter.v3(
input_data=m7.data,
expr='cond4 and cond6 and cond7 and cond8',
output_left_data=False
)
m38 = M.features_short.v1(
input_1=m3.data
)
m26 = M.dl_convert_to_bin.v2(
input_data=m2.data,
features=m38.data_1,
window_size=2,
feature_clip=-2,
flatten=True,
window_along_col='instrument'
)
m4 = M.cached.v3(
input_1=m26.data,
input_2=m38.data_1,
run=m4_run_bigquant_run,
post_run=m4_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m9 = M.instruments.v2(
start_date=T.live_run_param('trading_date', '2019-10-30'),
end_date=T.live_run_param('trading_date', '2021-12-20'),
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m17 = M.general_feature_extractor.v7(
instruments=m9.data,
features=m25.data,
start_date='',
end_date='',
before_start_days=58
)
m18 = M.derived_feature_extractor.v3(
input_data=m17.data,
features=m25.data,
date_col='date',
instrument_col='instrument',
drop_na=True,
remove_extra_columns=False
)
m13 = M.use_datasource.v1(
instruments=m9.data,
datasource_id='net_amount_CN_STOCK_A',
start_date='',
end_date=''
)
m14 = M.filter.v3(
input_data=m13.data,
expr='mf_net_amount_l>18000000',
output_left_data=False
)
m35 = M.select_columns.v3(
input_ds=m14.data,
columns='date,instrument',
reverse_select=False
)
m36 = M.join.v3(
data1=m18.data,
data2=m35.data,
on='date,instrument',
how='inner',
sort=False
)
m37 = M.filter.v3(
input_data=m36.data,
expr='cond4 and cond6 and cond7 and cond8',
output_left_data=False
)
m27 = M.dl_convert_to_bin.v2(
input_data=m37.data,
features=m38.data_1,
window_size=2,
feature_clip=2,
flatten=True,
window_along_col='instrument'
)
m8 = M.cached.v3(
input_1=m27.data,
input_2=m38.data_1,
run=m8_run_bigquant_run,
post_run=m8_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m6 = M.dl_layer_input.v1(
shape='23,2',
batch_shape='',
dtype='float32',
sparse=False,
name=''
)
m10 = M.dl_layer_conv1d.v1(
inputs=m6.data,
filters=32,
kernel_size='5',
strides='1',
padding='valid',
dilation_rate=1,
activation='relu',
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='Zeros',
kernel_regularizer='None',
kernel_regularizer_l1=0,
kernel_regularizer_l2=0,
bias_regularizer='None',
bias_regularizer_l1=0,
bias_regularizer_l2=0,
activity_regularizer='None',
activity_regularizer_l1=0,
activity_regularizer_l2=0,
kernel_constraint='None',
bias_constraint='None',
name=''
)
m12 = M.dl_layer_maxpooling1d.v1(
inputs=m10.data,
pool_size=1,
padding='valid',
name=''
)
m32 = M.dl_layer_conv1d.v1(
inputs=m12.data,
filters=32,
kernel_size='3',
strides='1',
padding='valid',
dilation_rate=1,
activation='relu',
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='Zeros',
kernel_regularizer='None',
kernel_regularizer_l1=0,
kernel_regularizer_l2=0,
bias_regularizer='None',
bias_regularizer_l1=0,
bias_regularizer_l2=0,
activity_regularizer='None',
activity_regularizer_l1=0,
activity_regularizer_l2=0,
kernel_constraint='None',
bias_constraint='None',
name=''
)
m33 = M.dl_layer_maxpooling1d.v1(
inputs=m32.data,
pool_size=1,
padding='valid',
name=''
)
m28 = M.dl_layer_globalmaxpooling1d.v1(
inputs=m33.data,
name=''
)
m30 = M.dl_layer_dense.v1(
inputs=m28.data,
units=1,
activation='linear',
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='Zeros',
kernel_regularizer='None',
kernel_regularizer_l1=0,
kernel_regularizer_l2=0,
bias_regularizer='None',
bias_regularizer_l1=0,
bias_regularizer_l2=0,
activity_regularizer='None',
activity_regularizer_l1=0,
activity_regularizer_l2=0,
kernel_constraint='None',
bias_constraint='None',
name=''
)
m34 = M.dl_model_init.v1(
inputs=m6.data,
outputs=m30.data
)
m5 = M.dl_model_train.v1(
input_model=m34.data,
training_data=m4.data_1,
optimizer='RMSprop',
loss='mean_squared_error',
metrics='mae',
batch_size=10240,
epochs=5,
custom_objects=m5_custom_objects_bigquant_run,
n_gpus=0,
verbose='2:每个epoch输出一行记录'
)
m11 = M.dl_model_predict.v1(
trained_model=m5.data,
input_data=m8.data_1,
batch_size=1024,
n_gpus=0,
verbose='2:每个epoch输出一行记录'
)
m24 = M.cached.v3(
input_1=m11.data,
input_2=m37.data,
run=m24_run_bigquant_run,
post_run=m24_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m44 = M.input_features.v1(
features="""
# #号开始的表示注释,注释需单独一行
# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
#bm_0 = where(close/shift(close,5)-1<-0.05,1,0)
bm_0=where(ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4)<0,1,0)"""
)
m43 = M.index_feature_extract.v3(
input_1=m9.data,
input_2=m44.data,
before_days=100,
index='000001.HIX'
)
m42 = M.select_columns.v3(
input_ds=m43.data_1,
columns='date,bm_0',
reverse_select=False
)
m41 = M.join.v3(
data1=m24.data_1,
data2=m42.data,
on='date',
how='left',
sort=False
)
m40 = M.sort.v4(
input_ds=m41.data,
sort_by='pred_label',
group_by='date',
keep_columns='--',
ascending=False
)
m39 = M.trade.v4(
instruments=m9.data,
options_data=m40.sorted_data,
start_date='',
end_date='',
initialize=m39_initialize_bigquant_run,
handle_data=m39_handle_data_bigquant_run,
prepare=m39_prepare_bigquant_run,
before_trading_start=m39_before_trading_start_bigquant_run,
volume_limit=0,
order_price_field_buy='open',
order_price_field_sell='close',
capital_base=100000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='真实价格',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.SHA'
)
[2023-02-10 16:05:25.537710] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-02-10 16:05:25.563195] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:25.564630] INFO: moduleinvoker: instruments.v2 运行完成[0.026927s].
[2023-02-10 16:05:26.721100] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2023-02-10 16:05:26.730775] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:26.732244] INFO: moduleinvoker: use_datasource.v1 运行完成[0.011145s].
[2023-02-10 16:05:26.741096] INFO: moduleinvoker: filter.v3 开始运行..
[2023-02-10 16:05:26.748481] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:26.749605] INFO: moduleinvoker: filter.v3 运行完成[0.008507s].
[2023-02-10 16:05:27.838188] INFO: moduleinvoker: select_columns.v3 开始运行..
[2023-02-10 16:05:27.846970] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:27.848255] INFO: moduleinvoker: select_columns.v3 运行完成[0.010082s].
[2023-02-10 16:05:27.852455] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2023-02-10 16:05:27.866940] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:27.868083] INFO: moduleinvoker: use_datasource.v1 运行完成[0.015634s].
[2023-02-10 16:05:27.891587] INFO: moduleinvoker: join.v3 开始运行..
[2023-02-10 16:05:27.902616] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:27.904637] INFO: moduleinvoker: join.v3 运行完成[0.013039s].
[2023-02-10 16:05:27.916391] INFO: moduleinvoker: auto_labeler_on_datasource.v1 开始运行..
[2023-02-10 16:05:27.926037] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:27.927276] INFO: moduleinvoker: auto_labeler_on_datasource.v1 运行完成[0.010895s].
[2023-02-10 16:05:27.931482] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-10 16:05:27.941408] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:27.942537] INFO: moduleinvoker: input_features.v1 运行完成[0.011058s].
[2023-02-10 16:05:27.945812] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-10 16:05:27.953147] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:27.954190] INFO: moduleinvoker: input_features.v1 运行完成[0.00838s].
[2023-02-10 16:05:27.973801] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-02-10 16:05:27.984790] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:27.985893] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012098s].
[2023-02-10 16:05:27.992720] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-02-10 16:05:28.011171] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:28.012317] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.019597s].
[2023-02-10 16:05:28.019110] INFO: moduleinvoker: join.v3 开始运行..
[2023-02-10 16:05:28.026216] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:28.027318] INFO: moduleinvoker: join.v3 运行完成[0.008209s].
[2023-02-10 16:05:28.034048] INFO: moduleinvoker: filter.v3 开始运行..
[2023-02-10 16:05:28.043068] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:28.044128] INFO: moduleinvoker: filter.v3 运行完成[0.01008s].
[2023-02-10 16:05:28.087835] INFO: moduleinvoker: features_short.v1 开始运行..
[2023-02-10 16:05:28.107644] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:28.109073] INFO: moduleinvoker: features_short.v1 运行完成[0.021253s].
[2023-02-10 16:05:28.139290] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2023-02-10 16:05:28.154400] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:28.155700] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.016419s].
[2023-02-10 16:05:28.167122] INFO: moduleinvoker: cached.v3 开始运行..
[2023-02-10 16:05:28.185281] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:05:28.186556] INFO: moduleinvoker: cached.v3 运行完成[0.019435s].
[2023-02-10 16:05:28.190965] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-02-10 16:05:28.274961] INFO: moduleinvoker: instruments.v2 运行完成[0.083983s].
[2023-02-10 16:05:28.287685] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-02-10 16:05:30.068381] INFO: 基础特征抽取: 年份 2019, 特征行数=299131
[2023-02-10 16:05:34.925477] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2023-02-10 16:05:39.884707] INFO: 基础特征抽取: 年份 2021, 特征行数=1019570
[2023-02-10 16:05:39.991025] INFO: 基础特征抽取: 总行数: 2264662
[2023-02-10 16:05:39.999966] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[11.712282s].
[2023-02-10 16:05:40.007150] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-02-10 16:05:44.819047] INFO: derived_feature_extractor: 提取完成 open_0/close_1, 0.004s
[2023-02-10 16:05:45.973313] INFO: derived_feature_extractor: 提取完成 cond3=low_0 > mean(close_0,20), 1.153s
[2023-02-10 16:05:57.765029] INFO: derived_feature_extractor: 提取完成 cond1=ta_trix(close_0, derive='long'), 11.790s
[2023-02-10 16:06:07.389709] INFO: derived_feature_extractor: 提取完成 cond2=ta_dma(close_0, 'long'), 9.623s
[2023-02-10 16:06:07.393810] INFO: derived_feature_extractor: 提取完成 cond4= (close_0-close_1)/close_1 >0.04, 0.003s
[2023-02-10 16:06:07.396572] INFO: derived_feature_extractor: 提取完成 cond5=close_0>open_0, 0.002s
[2023-02-10 16:06:07.399188] INFO: derived_feature_extractor: 提取完成 cond6=st_status_0==0, 0.002s
[2023-02-10 16:06:17.080441] INFO: derived_feature_extractor: 提取完成 cond7=ta_macd(close_0,'long'), 9.680s
[2023-02-10 16:06:26.831988] INFO: derived_feature_extractor: 提取完成 cond8=ta_ma(close_0,5, derive='long'), 9.750s
[2023-02-10 16:06:26.845575] INFO: derived_feature_extractor: 提取完成 return_5/return_20#43: 5天的收益率/20天的收益率, 0.012s
[2023-02-10 16:06:26.849091] INFO: derived_feature_extractor: 提取完成 rank_amount_5#45:最近5日的成交额排名, 0.002s
[2023-02-10 16:06:26.852650] INFO: derived_feature_extractor: 提取完成 avg_turn_10#46:平均10天的换手率, 0.003s
[2023-02-10 16:06:26.855597] INFO: derived_feature_extractor: 提取完成 market_cap_float_0<280000000000#47:流通市值<280亿, 0.002s
[2023-02-10 16:06:26.858217] INFO: derived_feature_extractor: 提取完成 pe_ttm_0>0#48:ttm pe市盈率要大于0, 0.002s
[2023-02-10 16:06:26.861508] INFO: derived_feature_extractor: 提取完成 pb_lf_0#49:市净率, 0.002s
[2023-02-10 16:06:28.146002] INFO: derived_feature_extractor: 提取完成 sum(mf_net_pct_main_0>0.12,30)>11#50:统计30天内主力流入占比大于12%的天数, 1.284s
[2023-02-10 16:06:28.149446] INFO: derived_feature_extractor: 提取完成 fs_roa_ttm_0>5#51:总资产报酬率roa要大于5, 0.002s
[2023-02-10 16:06:28.153127] INFO: derived_feature_extractor: 提取完成 fs_cash_ratio_0#52:现金流量, 0.003s
[2023-02-10 16:06:29.466078] INFO: derived_feature_extractor: 提取完成 close_0>ts_max(close_0,56)#53:当日收盘价破 56天最高价(创新高), 1.312s
[2023-02-10 16:06:29.473412] INFO: derived_feature_extractor: 提取完成 ta_sma_10_0/ta_sma_30_0#56: 10天的sma线/30天的sma线, 0.006s
[2023-02-10 16:06:29.476608] INFO: derived_feature_extractor: 提取完成 ta_sar_0# 58:SAR抛物线指标, 0.002s
[2023-02-10 16:06:29.483789] INFO: derived_feature_extractor: 提取完成 swing_volatility_10_0/swing_volatility_60_0 #59: 10天的波动率/60天的波动率, 0.006s
[2023-02-10 16:06:29.487966] INFO: derived_feature_extractor: 提取完成 ta_cci_14_0 #60:CCI -14天的指标, 0.003s
[2023-02-10 16:06:29.493612] INFO: derived_feature_extractor: 提取完成 rank_return_3 #61: 3天收益率的 排名, 0.004s
[2023-02-10 16:06:29.496861] INFO: derived_feature_extractor: 提取完成 mf_net_amount_0>mf_net_amount_1 #62: 判断 当日的资金流入净额>昨日资金流入净额, 0.002s
[2023-02-10 16:06:30.818403] INFO: derived_feature_extractor: 提取完成 mf_net_amount_xl_0>mean(mf_net_amount_xl_0, 30)# 64:当天的超大单流入净量>平均30天内的超大单流入净量(30天超大单MA线), 1.275s
[2023-02-10 16:06:30.843244] INFO: derived_feature_extractor: 提取完成 cond4= (close_0-close_1)/close_1 >0.05# 65:当天涨幅>5%, 0.024s
[2023-02-10 16:06:30.847577] INFO: derived_feature_extractor: 提取完成 (close_0-close_30)/close_30>1.25# 66:30天内的涨幅大于125%, 0.003s
[2023-02-10 16:06:30.851634] INFO: derived_feature_extractor: 提取完成 (close_0-close_5)/close_5>1.16# 67:5天内的涨幅>116%, 0.003s
[2023-02-10 16:06:30.854508] INFO: derived_feature_extractor: 提取完成 list_days_0>365# 68:上市天数>365天, 0.002s
[2023-02-10 16:06:30.859878] INFO: derived_feature_extractor: 提取完成 ta_bbands_middleband_28_0 #69:布林带28天均线, 0.004s
[2023-02-10 16:06:32.147631] INFO: derived_feature_extractor: 提取完成 cond28=sum(price_limit_status_0==3,80)>5 #70:统计80天内 涨停板的次数大于5, 1.287s
[2023-02-10 16:06:33.729014] INFO: derived_feature_extractor: /y_2019, 299131
[2023-02-10 16:06:35.534489] INFO: derived_feature_extractor: /y_2020, 945961
[2023-02-10 16:06:38.387232] INFO: derived_feature_extractor: /y_2021, 1019570
[2023-02-10 16:06:39.988384] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[59.981223s].
[2023-02-10 16:06:39.994525] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2023-02-10 16:06:42.266982] INFO: moduleinvoker: use_datasource.v1 运行完成[2.272448s].
[2023-02-10 16:06:42.278305] INFO: moduleinvoker: filter.v3 开始运行..
[2023-02-10 16:06:42.294062] INFO: filter: 使用表达式 mf_net_amount_l>18000000 过滤
[2023-02-10 16:06:45.118548] INFO: filter: 过滤 /data, 64911/0/2135882
[2023-02-10 16:06:45.153840] INFO: moduleinvoker: filter.v3 运行完成[2.875524s].
[2023-02-10 16:06:45.169527] INFO: moduleinvoker: select_columns.v3 开始运行..
[2023-02-10 16:06:45.364140] INFO: moduleinvoker: select_columns.v3 运行完成[0.194619s].
[2023-02-10 16:06:45.375597] INFO: moduleinvoker: join.v3 开始运行..
[2023-02-10 16:06:46.744588] INFO: join: /y_2019, 行数=1822/274881, 耗时=0.501564s
[2023-02-10 16:06:48.425142] INFO: join: /y_2020, 行数=19680/839900, 耗时=1.678414s
[2023-02-10 16:06:50.137659] INFO: join: /y_2021, 行数=32505/851138, 耗时=1.708674s
[2023-02-10 16:06:50.199723] INFO: join: 最终行数: 54007
[2023-02-10 16:06:50.221614] INFO: moduleinvoker: join.v3 运行完成[4.846012s].
[2023-02-10 16:06:50.230077] INFO: moduleinvoker: filter.v3 开始运行..
[2023-02-10 16:06:50.265622] INFO: filter: 使用表达式 cond4 and cond6 and cond7 and cond8 过滤
[2023-02-10 16:06:50.345003] INFO: filter: 过滤 /y_2019, 286/0/1822
[2023-02-10 16:06:50.433226] INFO: filter: 过滤 /y_2020, 4117/0/19680
[2023-02-10 16:06:50.545520] INFO: filter: 过滤 /y_2021, 5064/0/32505
[2023-02-10 16:06:50.568262] INFO: moduleinvoker: filter.v3 运行完成[0.338174s].
[2023-02-10 16:06:50.583598] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2023-02-10 16:06:50.897908] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.314306s].
[2023-02-10 16:06:50.908072] INFO: moduleinvoker: cached.v3 开始运行..
[2023-02-10 16:06:50.959644] INFO: moduleinvoker: cached.v3 运行完成[0.051584s].
[2023-02-10 16:06:54.440072] INFO: moduleinvoker: dl_layer_input.v1 运行完成[3.472056s].
[2023-02-10 16:06:54.498288] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.050209s].
[2023-02-10 16:06:54.511449] INFO: moduleinvoker: dl_layer_maxpooling1d.v1 运行完成[0.005557s].
[2023-02-10 16:06:54.531675] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.013842s].
[2023-02-10 16:06:54.542104] INFO: moduleinvoker: dl_layer_maxpooling1d.v1 运行完成[0.005017s].
[2023-02-10 16:06:54.551264] INFO: moduleinvoker: dl_layer_globalmaxpooling1d.v1 运行完成[0.003348s].
[2023-02-10 16:06:54.803878] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.244566s].
[2023-02-10 16:06:54.835184] INFO: moduleinvoker: cached.v3 开始运行..
[2023-02-10 16:06:54.847343] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:06:54.848617] INFO: moduleinvoker: cached.v3 运行完成[0.01344s].
[2023-02-10 16:06:54.850452] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.037907s].
[2023-02-10 16:06:54.858359] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2023-02-10 16:06:54.866224] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:06:54.867715] INFO: moduleinvoker: dl_model_train.v1 运行完成[0.009357s].
[2023-02-10 16:06:54.871608] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2023-02-10 16:06:55.481943] INFO: moduleinvoker: dl_model_predict.v1 运行完成[0.610318s].
[2023-02-10 16:06:55.495203] INFO: moduleinvoker: cached.v3 开始运行..
[2023-02-10 16:06:55.787513] INFO: moduleinvoker: cached.v3 运行完成[0.292316s].
[2023-02-10 16:06:55.791305] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-02-10 16:06:55.806063] INFO: moduleinvoker: 命中缓存
[2023-02-10 16:06:55.807222] INFO: moduleinvoker: input_features.v1 运行完成[0.015923s].
[2023-02-10 16:06:55.828604] INFO: moduleinvoker: index_feature_extract.v3 开始运行..
[2023-02-10 16:06:55.963860] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-02-10 16:06:56.004644] INFO: derived_feature_extractor: 提取完成 bm_0=where(ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4)<0,1,0), 0.009s
[2023-02-10 16:06:56.043880] INFO: derived_feature_extractor: /data, 588
[2023-02-10 16:06:56.097770] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.133879s].
[2023-02-10 16:06:56.320882] INFO: moduleinvoker: index_feature_extract.v3 运行完成[0.492279s].
[2023-02-10 16:06:56.331212] INFO: moduleinvoker: select_columns.v3 开始运行..
[2023-02-10 16:06:56.426909] INFO: moduleinvoker: select_columns.v3 运行完成[0.095694s].
[2023-02-10 16:06:56.434087] INFO: moduleinvoker: join.v3 开始运行..
[2023-02-10 16:06:56.581227] INFO: join: /data, 行数=9467/9467, 耗时=0.0402s
[2023-02-10 16:06:56.608557] INFO: join: 最终行数: 9467
[2023-02-10 16:06:56.612699] INFO: moduleinvoker: join.v3 运行完成[0.178609s].
[2023-02-10 16:06:56.620214] INFO: moduleinvoker: sort.v4 开始运行..
[2023-02-10 16:06:57.107962] INFO: moduleinvoker: sort.v4 运行完成[0.48773s].
[2023-02-10 16:06:58.594542] INFO: moduleinvoker: backtest.v8 开始运行..
[2023-02-10 16:06:58.601492] INFO: backtest: biglearning backtest:V8.6.3
[2023-02-10 16:07:00.395849] INFO: backtest: product_type:stock by specified
[2023-02-10 16:07:00.473500] INFO: moduleinvoker: cached.v2 开始运行..
[2023-02-10 16:07:09.344103] INFO: backtest: 读取股票行情完成:3395285
[2023-02-10 16:07:11.547497] INFO: moduleinvoker: cached.v2 运行完成[11.073999s].
[2023-02-10 16:07:22.516399] INFO: backtest: algo history_data=DataSource(071e25cd1e5749a8b0c53593db38a7a2T)
[2023-02-10 16:07:22.517807] INFO: algo: TradingAlgorithm V1.8.9
[2023-02-10 16:07:23.326783] INFO: algo: trading transform...
[2023-02-10 16:07:26.948440] INFO: Performance: Simulated 522 trading days out of 522.
[2023-02-10 16:07:26.949725] INFO: Performance: first open: 2019-10-30 09:30:00+00:00
[2023-02-10 16:07:26.950706] INFO: Performance: last close: 2021-12-20 15:00:00+00:00
[2023-02-10 16:07:30.452608] INFO: moduleinvoker: backtest.v8 运行完成[31.858056s].
[2023-02-10 16:07:30.454390] INFO: moduleinvoker: trade.v4 运行完成[33.339181s].
pd.DataFrame([DataSource(m5.data.id).read()]).to_pickle('/home/bigquant/work/userlib/model.csv')
m31