{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-7701:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-185:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-2070:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-503:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-7701:input_1","from_node_id":"-113:data"},{"to_node_id":"-185:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-180:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-7701:data_1"},{"to_node_id":"-2070:input_1","from_node_id":"-503:data"},{"to_node_id":"-113:input_data","from_node_id":"-185:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-180:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-2070:input_3","from_node_id":"-86:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-86:input_data","from_node_id":"-129:data"},{"to_node_id":"-141:options_data","from_node_id":"-2070:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"return_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":" ","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-7701","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1,input_2, columns_input):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n if input_2==None:\n if columns_input==[]:\n print('请输入标准化的列名或连接输入因子列表模块')\n else:\n columns = columns_input\n else:\n columns = input_2.read_pickle()\n\n def standard(x):\n return (x-x.mean())/x.std() \n \n \n for fac in columns:\n median = df[fac].median()\n std = df[fac].std()\n df[fac] = df.groupby('date')[fac].apply(standard)\n \n ds = DataSource().write_df(df)\n return Outputs(data_1=ds)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\n 'columns_input': []\n}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"data_1","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-7701"},{"name":"input_2","node_id":"-7701"},{"name":"input_3","node_id":"-7701"}],"output_ports":[{"name":"data_1","node_id":"-7701"},{"name":"data_2","node_id":"-7701"},{"name":"data_3","node_id":"-7701"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-503","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-503"},{"name":"features","node_id":"-503"}],"output_ports":[{"name":"data","node_id":"-503"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-185","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-185"},{"name":"features","node_id":"-185"}],"output_ports":[{"name":"data","node_id":"-185"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-180","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n# all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-180"}],"output_ports":[{"name":"data","node_id":"-180"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-06-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":10,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-2070","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"import numpy as np\nimport xgboost as xgb\n\n\n# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 读取数据和特征\n train_data = input_1.read()\n feature = input_2.read()\n test_data = input_3.read()\n #设置训练集\n train = train_data\n #设置xgboost数据格式\n dtrain = xgb.DMatrix(train[feature], train[\"label\"])\n dtrain.set_group(list(train.groupby('date').apply(len)))\n dtrain.feature_names = feature\n \n \n dtest = xgb.DMatrix(test_data[feature], label = None)\n dtest.set_group(list(test_data.groupby('date').apply(len)))\n dtest.feature_names = feature\n parameters = {'objective': 'rank:pairwise', 'max_depth': 6, 'num_boost_round': 20, 'nthread': 1} \n\n\n #训练\n model = xgb.train(params=parameters, dtrain=dtrain)\n \n #获取预测结果\n pred = model.predict(dtest)\n test_data['prediction'] = pred\n data = test_data[['date','instrument','prediction']].groupby('date').apply(lambda x:x.sort_values('prediction',ascending=False)).reset_index(drop=True)\n return Outputs(data_1=DataSource.write_df(data))\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2070"},{"name":"input_2","node_id":"-2070"},{"name":"input_3","node_id":"-2070"}],"output_ports":[{"name":"data_1","node_id":"-2070"},{"name":"data_2","node_id":"-2070"},{"name":"data_3","node_id":"-2070"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='244,-178,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='-166,308,200,200'/><node_position Node='-113' Position='-14,102,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='-195,-95,200,200'/><node_position Node='-7701' Position='0,200,200,200'/><node_position Node='-503' Position='-155,400,200,200'/><node_position Node='-185' Position='-63,6,200,200'/><node_position Node='-180' Position='-381,27,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='545,32,200,200'/><node_position Node='-86' Position='520,362,200,200'/><node_position Node='-122' Position='511,155,200,200'/><node_position Node='-129' Position='550,267,200,200'/><node_position Node='-141' Position='278,682,200,200'/><node_position Node='-2070' Position='145,511,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-04-02 10:01:20.156952] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-02 10:01:20.165651] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.167874] INFO: moduleinvoker: input_features.v1 运行完成[0.010938s].
[2022-04-02 10:01:20.174163] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-02 10:01:20.183645] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.185139] INFO: moduleinvoker: instruments.v2 运行完成[0.010983s].
[2022-04-02 10:01:20.204604] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-02 10:01:20.215138] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.216828] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012241s].
[2022-04-02 10:01:20.227567] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-02 10:01:20.236527] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.238496] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010927s].
[2022-04-02 10:01:20.253389] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-02 10:01:20.263934] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.266029] INFO: moduleinvoker: cached.v3 运行完成[0.012657s].
[2022-04-02 10:01:20.282446] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-04-02 10:01:20.307471] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.309566] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.027122s].
[2022-04-02 10:01:20.322798] INFO: moduleinvoker: join.v3 开始运行..
[2022-04-02 10:01:20.331966] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.333731] INFO: moduleinvoker: join.v3 运行完成[0.010936s].
[2022-04-02 10:01:20.347788] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-04-02 10:01:20.355731] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.357531] INFO: moduleinvoker: dropnan.v2 运行完成[0.009737s].
[2022-04-02 10:01:20.365248] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-02 10:01:20.374848] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.376681] INFO: moduleinvoker: instruments.v2 运行完成[0.011436s].
[2022-04-02 10:01:20.396071] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-02 10:01:20.407159] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.408878] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012858s].
[2022-04-02 10:01:20.419106] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-02 10:01:20.427190] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.428740] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.009638s].
[2022-04-02 10:01:20.443017] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-04-02 10:01:20.451335] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:01:20.453002] INFO: moduleinvoker: dropnan.v1 运行完成[0.009976s].
[2022-04-02 10:01:20.471830] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-02 10:04:46.248905] INFO: moduleinvoker: cached.v3 运行完成[205.777073s].
[2022-04-02 10:04:46.341531] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-04-02 10:04:46.349425] INFO: backtest: biglearning backtest:V8.6.2
[2022-04-02 10:04:46.350904] INFO: backtest: product_type:stock by specified
[2022-04-02 10:04:46.491274] INFO: moduleinvoker: cached.v2 开始运行..
[2022-04-02 10:04:46.506663] INFO: moduleinvoker: 命中缓存
[2022-04-02 10:04:46.509293] INFO: moduleinvoker: cached.v2 运行完成[0.018028s].
[2022-04-02 10:04:47.610615] INFO: algo: TradingAlgorithm V1.8.7
[2022-04-02 10:04:48.142123] INFO: algo: trading transform...
[2022-04-02 10:04:51.737876] INFO: Performance: Simulated 99 trading days out of 99.
[2022-04-02 10:04:51.739729] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2022-04-02 10:04:51.741112] INFO: Performance: last close: 2015-06-01 15:00:00+00:00
[2022-04-02 10:04:53.572277] INFO: moduleinvoker: backtest.v8 运行完成[7.23075s].
[2022-04-02 10:04:53.574773] INFO: moduleinvoker: trade.v4 运行完成[7.316363s].
- 收益率105.39%
- 年化收益率524.67%
- 基准收益率43.65%
- 阿尔法2.24
- 贝塔0.71
- 夏普比率6.42
- 胜率0.71
- 盈亏比1.77
- 收益波动率28.81%
- 信息比率0.28
- 最大回撤7.15%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-25a9e74fe0a94dc081b1d40e787c2ece"}/bigcharts-data-end