{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-787:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-787:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-794:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-803:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-810:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-8155:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-8144:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-131:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-803:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-982:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-8155:input_1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"-8155:input_3","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-794:input_data","SourceOutputPortId":"-787:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-794:data"},{"DestinationInputPortId":"-810:input_data","SourceOutputPortId":"-803:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-810:data"},{"DestinationInputPortId":"-8144:train_ds","SourceOutputPortId":"-8155:data_1"},{"DestinationInputPortId":"-8144:test_ds","SourceOutputPortId":"-8155:data_2"},{"DestinationInputPortId":"-131:training_ds","SourceOutputPortId":"-8144:train_data"},{"DestinationInputPortId":"-131:predict_ds","SourceOutputPortId":"-8144:test_data"},{"DestinationInputPortId":"-982:options_data","SourceOutputPortId":"-131:predictions"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2016-05-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"shift(close, -5) / shift(open, -1)-1\nrank(label) #收益率排名\n#where(label>=0.95,1,where(label<=0.1, 0, NaN))\n# 收益率前1/4的标注为1,后1/4的标注为0,中间的为NA\nwhere(label>=0.95,1,0)","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"(close_0-mean(close_0,12))/mean(close_0,12)*100\nrank(std(amount_0,15))\nrank_avg_amount_0/rank_avg_amount_8\nts_argmin(low_0,20)\nrank_return_30\n(low_1-close_0)/close_0\nta_bbands_lowerband_14_0\nmean(mf_net_pct_s_0,4)\namount_0/avg_amount_3\nreturn_0/return_5\nreturn_1/return_5\nrank_avg_amount_7/rank_avg_amount_10\nta_sma_10_0/close_0\nsqrt(high_0*low_0)-amount_0/volume_0*adjust_factor_0\navg_turn_15/(turn_0+1e-5)\nreturn_10\nmf_net_pct_s_0\n(close_0-open_0)/close_1\n ","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2016-06-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-787","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-787"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-787"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-787","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-794","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-794"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-794"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-794","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-803","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-803"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-803"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-803","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-810","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-810"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-810"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-810","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-982","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n context.extension['index'] += 1\n # 不在换仓日就return,相当于后面的代码只会一周运行一次,买入的股票会持有一周\n if context.extension['index'] % context.rebalance_days != 0:\n return \n \n # 当前的日期\n date = data.current_dt.strftime('%Y-%m-%d')\n \n cur_data = context.indicator_data[context.indicator_data['date'] == date]\n # 根据日期获取调仓需要买入的股票的列表\n #stock_to_buy = list(cur_data.instrument[:context.stock_num])\n cur_data = cur_data[cur_data['pred_label'] == 1.0]\n \n stock_to_buy = list(cur_data.sort_values('instrument',ascending=False).instrument)[:context.stock_num]\n if date == '2017-02-06':\n print(date, len(stock_to_buy), stock_to_buy)\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = [equity.symbol for equity in context.portfolio.positions]\n # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有\n no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]\n # 需要卖出的股票\n stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]\n \n # 卖出\n for stock in stock_to_sell:\n # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态\n # 如果返回真值,则可以正常下单,否则会出错\n # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式\n\n if data.can_trade(context.symbol(stock)):\n # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,\n # 即卖出全部股票,可参考回测文档\n context.order_target_percent(context.symbol(stock), 0)\n \n # 如果当天没有买入的股票,就返回\n if len(stock_to_buy) == 0:\n return\n\n # 等权重买入 \n weight = 1 / len(stock_to_buy)\n \n # 买入\n for stock in stock_to_buy:\n if data.can_trade(context.symbol(stock)):\n # 下单使得某只股票的持仓权重达到weight,因为\n # weight大于0,因此是等权重买入\n context.order_target_percent(context.symbol(stock), weight)\n ","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.indicator_data = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n context.rebalance_days = 5\n context.stock_num = 50\n if 'index' not in context.extension:\n context.extension['index'] = 0\n \n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":"10000000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-982"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-982"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-982"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-982"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-982"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-982","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-8155","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n train_df = input_1.read()\n features = input_2.read()\n feature_min = train_df[features].quantile(0.005)\n feature_max = train_df[features].quantile(0.995)\n train_df[features] = train_df[features].clip(feature_min,feature_max,axis=1) #去极值\n data_1 = DataSource.write_df(train_df)\n test_df = input_3.read()\n test_df[features] = test_df[features].clip(feature_min,feature_max,axis=1)\n data_2 = DataSource.write_df(test_df)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-8155"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-8155"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-8155"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-8155","OutputType":null},{"Name":"data_2","NodeId":"-8155","OutputType":null},{"Name":"data_3","NodeId":"-8155","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"去掉特征异常的股票,比如某个特征值高于99.5%或低于0.5%的","CommentCollapsed":false},{"Id":"-8144","ModuleId":"BigQuantSpace.RobustScaler.RobustScaler-v13","ModuleParameters":[{"Name":"scale_type","Value":"standard","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"quantile_range_min","Value":"0.01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"quantile_range_max","Value":"0.99","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"global_scale","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"train_ds","NodeId":"-8144"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-8144"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-8144"}],"OutputPortsInternal":[{"Name":"train_data","NodeId":"-8144","OutputType":null},{"Name":"test_data","NodeId":"-8144","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-131","ModuleId":"BigQuantSpace.svc.svc-v1","ModuleParameters":[{"Name":"C","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel","Value":"rbf","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"degree","Value":3,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"gamma","Value":"-1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"coef0","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"tol","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_iter","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"key_cols","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"other_train_parameters","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-131"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-131"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"-131"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"predict_ds","NodeId":"-131"}],"OutputPortsInternal":[{"Name":"output_model","NodeId":"-131","OutputType":null},{"Name":"predictions","NodeId":"-131","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='63,4,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='-66,124,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='656,-21,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='151,308,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1077,121,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='149,395,200,200'/><NodePosition Node='-86' Position='1078,418,200,200'/><NodePosition Node='-787' Position='301,127,200,200'/><NodePosition Node='-794' Position='304,212,200,200'/><NodePosition Node='-803' Position='1078,236,200,200'/><NodePosition Node='-810' Position='1081,327,200,200'/><NodePosition Node='-982' Position='716,821,200,200'/><NodePosition Node='-8155' Position='556,417,200,200'/><NodePosition Node='-8144' Position='555,594,200,200'/><NodePosition Node='-131' Position='567,712,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2019-05-06 11:45:30.479298] INFO: bigquant: instruments.v2 开始运行..
[2019-05-06 11:45:30.519855] INFO: bigquant: 命中缓存
[2019-05-06 11:45:30.522272] INFO: bigquant: instruments.v2 运行完成[0.042974s].
[2019-05-06 11:45:30.525756] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
[2019-05-06 11:45:30.567562] INFO: bigquant: 命中缓存
[2019-05-06 11:45:30.570418] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.044652s].
[2019-05-06 11:45:30.573187] INFO: bigquant: input_features.v1 开始运行..
[2019-05-06 11:45:30.613068] INFO: bigquant: 命中缓存
[2019-05-06 11:45:30.615831] INFO: bigquant: input_features.v1 运行完成[0.042628s].
[2019-05-06 11:45:30.664908] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-05-06 11:45:30.702485] INFO: bigquant: 命中缓存
[2019-05-06 11:45:30.704646] INFO: bigquant: general_feature_extractor.v7 运行完成[0.039739s].
[2019-05-06 11:45:30.707987] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-05-06 11:45:30.738286] INFO: bigquant: 命中缓存
[2019-05-06 11:45:30.742187] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.034188s].
[2019-05-06 11:45:30.746305] INFO: bigquant: join.v3 开始运行..
[2019-05-06 11:45:30.791476] INFO: bigquant: 命中缓存
[2019-05-06 11:45:30.793485] INFO: bigquant: join.v3 运行完成[0.047174s].
[2019-05-06 11:45:30.796401] INFO: bigquant: dropnan.v1 开始运行..
[2019-05-06 11:45:30.840470] INFO: bigquant: 命中缓存
[2019-05-06 11:45:30.842358] INFO: bigquant: dropnan.v1 运行完成[0.045949s].
[2019-05-06 11:45:30.846407] INFO: bigquant: instruments.v2 开始运行..
[2019-05-06 11:45:30.882743] INFO: bigquant: 命中缓存
[2019-05-06 11:45:30.884956] INFO: bigquant: instruments.v2 运行完成[0.038538s].
[2019-05-06 11:45:30.931949] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-05-06 11:45:30.970756] INFO: bigquant: 命中缓存
[2019-05-06 11:45:30.972937] INFO: bigquant: general_feature_extractor.v7 运行完成[0.040989s].
[2019-05-06 11:45:30.976099] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-05-06 11:45:31.012396] INFO: bigquant: 命中缓存
[2019-05-06 11:45:31.017191] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.041077s].
[2019-05-06 11:45:31.021486] INFO: bigquant: dropnan.v1 开始运行..
[2019-05-06 11:45:31.063160] INFO: bigquant: 命中缓存
[2019-05-06 11:45:31.065145] INFO: bigquant: dropnan.v1 运行完成[0.043656s].
[2019-05-06 11:45:31.070399] INFO: bigquant: cached.v3 开始运行..
[2019-05-06 11:45:31.148204] INFO: bigquant: 命中缓存
[2019-05-06 11:45:31.151226] INFO: bigquant: cached.v3 运行完成[0.080823s].
[2019-05-06 11:45:31.156438] INFO: bigquant: RobustScaler.v13 开始运行..
[2019-05-06 11:45:31.222299] INFO: bigquant: 命中缓存
[2019-05-06 11:45:31.224398] INFO: bigquant: RobustScaler.v13 运行完成[0.067952s].
[2019-05-06 11:45:31.228031] INFO: bigquant: svc.v1 开始运行..
[2019-05-06 11:45:51.970547] INFO: bigquant: svc.v1 运行完成[20.742491s].
[2019-05-06 11:45:52.019557] INFO: bigquant: backtest.v8 开始运行..
[2019-05-06 11:45:52.023713] INFO: bigquant: biglearning backtest:V8.1.14
[2019-05-06 11:45:52.025556] INFO: bigquant: product_type:stock by specified
[2019-05-06 11:45:52.274144] INFO: bigquant: cached.v2 开始运行..
[2019-05-06 11:45:52.310644] INFO: bigquant: 命中缓存
[2019-05-06 11:45:52.312954] INFO: bigquant: cached.v2 运行完成[0.038807s].
[2019-05-06 11:45:58.847678] INFO: algo: TradingAlgorithm V1.4.12
[2019-05-06 11:46:09.127755] INFO: algo: trading transform...
[2019-05-06 11:46:14.875006] INFO: Performance: Simulated 144 trading days out of 144.
[2019-05-06 11:46:14.883882] INFO: Performance: first open: 2016-06-01 09:30:00+00:00
[2019-05-06 11:46:14.885657] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2019-05-06 11:46:17.112682] INFO: bigquant: backtest.v8 运行完成[25.093089s].
- 收益率12.7%
- 年化收益率23.27%
- 基准收益率4.43%
- 阿尔法0.15
- 贝塔0.84
- 夏普比率1.16
- 胜率0.6
- 盈亏比1.02
- 收益波动率16.76%
- 信息比率0.07
- 最大回撤8.68%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-0e16faadef8140668160749727c91433"}/bigcharts-data-end