克隆策略
In [3]:
## 策略简介

因子样例因子7

因子是否标准化

标注未来5日收益(不做离散化)

算法DNN

类型回归问题

训练集10-15

测试集16-19

选股依据根据预测值降序排序买入

持股数30

持仓天数5
  File "<ipython-input-3-a238bfba537a>", line 3
    因子:样例因子(7个)
              ^
SyntaxError: invalid character in identifier

模型结构

输入层 7 - 因子数量

全连接层 256 激活函数为relu

dropout 0.1

全连接层 128 激活函数为relu

全连接层 1 激活函数为linear - 预测输出

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-6007:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-132:features_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-6001:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-6013:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-137:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-7549:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-6001:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-6013:input_1","from_node_id":"-129:data"},{"to_node_id":"-168:inputs","from_node_id":"-160:data"},{"to_node_id":"-682:inputs","from_node_id":"-160:data"},{"to_node_id":"-224:inputs","from_node_id":"-168:data"},{"to_node_id":"-231:inputs","from_node_id":"-196:data"},{"to_node_id":"-196:inputs","from_node_id":"-224:data"},{"to_node_id":"-238:inputs","from_node_id":"-231:data"},{"to_node_id":"-682:outputs","from_node_id":"-238:data"},{"to_node_id":"-1098:input_model","from_node_id":"-682:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-1098:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-7549:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-1098:training_data","from_node_id":"-243:data"},{"to_node_id":"-1540:input_data","from_node_id":"-251:data"},{"to_node_id":"-106:features","from_node_id":"-132:data"},{"to_node_id":"-122:features","from_node_id":"-132:data"},{"to_node_id":"-113:features","from_node_id":"-132:data"},{"to_node_id":"-129:features","from_node_id":"-132:data"},{"to_node_id":"-243:features","from_node_id":"-132:data"},{"to_node_id":"-251:features","from_node_id":"-132:data"},{"to_node_id":"-251:input_data","from_node_id":"-1500:data"},{"to_node_id":"-2431:input_2","from_node_id":"-1500:data"},{"to_node_id":"-243:input_data","from_node_id":"-137:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-6001:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-6007:data"},{"to_node_id":"-1500:input_data","from_node_id":"-6013:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0/mean(close_0,5)\nclose_0/mean(close_0,10)\nclose_0/mean(close_0,20)\nclose_0/open_0\nopen_0/mean(close_0,5)\nopen_0/mean(close_0,10)\nopen_0/mean(close_0,20)\nreturn_5\nreturn_10\navg_amount_0/avg_amount_5\nrank_avg_amount_0/rank_avg_amount_5\nrank_return_0\nrank_return_5\nrank_return_0/rank_return_5\npe_ttm_0\n\n\n\n\n\n\n\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-11-19","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"20","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-168","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"256","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-168"}],"output_ports":[{"name":"data","node_id":"-168"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"128","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-224","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-224"}],"output_ports":[{"name":"data","node_id":"-224"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":false,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-682","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-682"},{"name":"outputs","node_id":"-682"}],"output_ports":[{"name":"data","node_id":"-682"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1098","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"20","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-1098"},{"name":"training_data","node_id":"-1098"},{"name":"validation_data","node_id":"-1098"}],"output_ports":[{"name":"data","node_id":"-1098"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-132","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nclose_0\nhigh_1\nopen_0\nlow_0\nst_status_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-132"}],"output_ports":[{"name":"data","node_id":"-132"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-1500","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"st_status_0==0 and low_0>high_1+0.02 and close_0>open_0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1500"}],"output_ports":[{"name":"data","node_id":"-1500"},{"name":"left_data","node_id":"-1500"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-137","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"st_status_0==0 and low_0>high_1 and close_0>open_0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-137"}],"output_ports":[{"name":"data","node_id":"-137"},{"name":"left_data","node_id":"-137"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-6001","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-6001"},{"name":"input_2","node_id":"-6001"}],"output_ports":[{"name":"data","node_id":"-6001"}],"cacheable":true,"seq_num":31,"comment":"","comment_collapsed":true},{"node_id":"-6007","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-6007"},{"name":"input_2","node_id":"-6007"}],"output_ports":[{"name":"data","node_id":"-6007"}],"cacheable":true,"seq_num":33,"comment":"","comment_collapsed":true},{"node_id":"-6013","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-6013"},{"name":"input_2","node_id":"-6013"}],"output_ports":[{"name":"data","node_id":"-6013"}],"cacheable":true,"seq_num":34,"comment":"","comment_collapsed":true},{"node_id":"-7549","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n # 所拥有的仓位情况\n positions = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n \n #------------------------------------------止赢模块START--------------------------------------------\n date = data.current_dt.strftime('%Y-%m-%d')\n positions_1 = {e.symbol: p.cost_basis for e, p in context.portfolio.positions.items()}\n # 新建当日止赢股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n current_stopwin_stock = [] \n if len(positions_1) > 0:\n for i in positions.keys():\n stock_cost = positions_1[i] \n stock_market_price = data.current(context.symbol(i), 'price') \n # 赚3元就止赢\n if stock_market_price - stock_cost >= 5: \n context.order_target_percent(context.symbol(i),0)\n cash_for_sell -= stock_hold_now[i]\n current_stopwin_stock.append(i)\n print('日期:',date,'股票:',i,'出现止盈状况')\n #-------------------------------------------止赢模块END---------------------------------------------\n \n #------------------------------------------止损模块START--------------------------------------------\n \n # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n current_stoploss_stock = [] \n if len(positions) > 0:\n for i in positions.keys():\n stock_market_price = data.current(context.symbol(i), 'price') # 最新市场价格\n last_sale_date = positions[i].last_sale_date # 上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n # 建仓以来的最高价\n highest_price_since_buy = data.history(context.symbol(i), 'high', hold_days, '1d').max()\n # 确定止损位置\n stoploss_line = highest_price_since_buy - highest_price_since_buy * 0.25\n record('止损位置', stoploss_line)\n # 如果价格下穿止损位置\n if stock_market_price < stoploss_line:\n context.order_target_percent(context.symbol(i),0)\n cash_for_sell -= stock_hold_now[i]\n current_stoploss_stock.append(i)\n print('日期:', date , '股票:', i, '出现止损状况')\n #-------------------------------------------止损模块END--------------------------------------------------\n\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n stock_to_sell = []\n stock_to_sell = current_stopwin_stock + current_stoploss_stock\n if not is_staging and cash_for_sell > 0:\n if len(positions) > 0:\n for instrument in positions.keys():\n last_sale_date = positions[instrument].last_sale_date #上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days #持仓天数\n # 股票实行t+1制度,必须使持仓天数大于0\n if hold_days > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument1 in instruments:\n context.order_target(context.symbol(instrument1), 0)\n cash_for_sell -= positions_1[instrument1]\n if cash_for_sell <= 0:\n break \n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n \n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - stock_hold_now.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - stock_hold_now.get(instrument, 0)\n if cash > 0:\n # 获取今天和过去两天的成交量\n volume_since_buy = data.history(context.symbol(instrument), 'volume', 3, '1d')\n close_price = data.current(context.symbol(instrument), 'close') #当收盘价\n high_price = data.current(context.symbol(instrument), 'high') #当天最高价\n # 冲高回落的股票不能买\n if ((volume_since_buy[2]/volume_since_buy[1] < 2.5) or (high_price/close_price<1.05)) and volume_since_buy[2]/volume_since_buy[0] > 1:\n current_price = data.current(context.symbol(instrument), 'price')\n amount = math.floor(cash / current_price - cash / current_price % 100)\n context.order(context.symbol(instrument), amount)\n return","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-7549"},{"name":"options_data","node_id":"-7549"},{"name":"history_ds","node_id":"-7549"},{"name":"benchmark_ds","node_id":"-7549"},{"name":"trading_calendar","node_id":"-7549"}],"output_ports":[{"name":"raw_perf","node_id":"-7549"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='207,52,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='131,205,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='657,-56,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='215,425,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='850,141,200,200'/><node_position Node='-106' Position='445,192,200,200'/><node_position Node='-113' Position='446,274,200,200'/><node_position Node='-122' Position='826,260,200,200'/><node_position Node='-129' Position='842,362,200,200'/><node_position Node='-160' Position='-205,35,200,200'/><node_position Node='-168' Position='-201,148,200,200'/><node_position Node='-196' Position='-203,311,200,200'/><node_position Node='-224' Position='-203,239,200,200'/><node_position Node='-231' Position='-201,395,200,200'/><node_position Node='-238' Position='-198,470,200,200'/><node_position Node='-682' Position='-194,560,200,200'/><node_position Node='-1098' Position='12,654,200,200'/><node_position Node='-1540' Position='335,716,200,200'/><node_position Node='-2431' Position='483,805,200,200'/><node_position Node='-243' Position='223,578,200,200'/><node_position Node='-251' Position='789,633,200,200'/><node_position Node='-132' Position='513,95,200,200'/><node_position Node='-1500' Position='814,552,200,200'/><node_position Node='-137' Position='217.55563354492188,501,200,200'/><node_position Node='-6001' Position='438,354,200,200'/><node_position Node='-6007' Position='125,318,200,200'/><node_position Node='-6013' Position='845,460,200,200'/><node_position Node='-7549' Position='429,907,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [1]:
    # 本代码由可视化策略环境自动生成 2021年11月25日 17:38
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 用户的自定义层需要写到字典中,比如
    # {
    #   "MyLayer": MyLayer
    # }
    m5_custom_objects_bigquant_run = {
        
    }
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m24_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        pred_label = input_1.read_pickle()
        df = input_2.read_df()
        df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
        df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
        return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m24_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m13_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.hold_days = 5
    # 回测引擎:每日数据处理函数,每天执行一次
    def m13_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.hold_days
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
        stock_hold_now = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.portfolio.positions.items()}
        # 所拥有的仓位情况
        positions = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}
        
         #------------------------------------------止赢模块START--------------------------------------------
        date = data.current_dt.strftime('%Y-%m-%d')
        positions_1 = {e.symbol: p.cost_basis  for e, p in context.portfolio.positions.items()}
        # 新建当日止赢股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断
        current_stopwin_stock = [] 
        if len(positions_1) > 0:
            for i in positions.keys():
                stock_cost = positions_1[i] 
                stock_market_price = data.current(context.symbol(i), 'price') 
                # 赚3元就止赢
                if stock_market_price - stock_cost >= 5: 
                    context.order_target_percent(context.symbol(i),0)
                    cash_for_sell -= stock_hold_now[i]
                    current_stopwin_stock.append(i)
                    print('日期:',date,'股票:',i,'出现止盈状况')
        #-------------------------------------------止赢模块END---------------------------------------------
        
        #------------------------------------------止损模块START--------------------------------------------
        
        # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断
        current_stoploss_stock = [] 
        if len(positions) > 0:
            for i in positions.keys():
                stock_market_price = data.current(context.symbol(i), 'price')  # 最新市场价格
                last_sale_date = positions[i].last_sale_date   # 上次交易日期
                delta_days = data.current_dt - last_sale_date  
                hold_days = delta_days.days # 持仓天数
                # 建仓以来的最高价
                highest_price_since_buy = data.history(context.symbol(i), 'high', hold_days, '1d').max()
                # 确定止损位置
                stoploss_line = highest_price_since_buy - highest_price_since_buy * 0.25
                record('止损位置', stoploss_line)
                # 如果价格下穿止损位置
                if stock_market_price < stoploss_line:
                    context.order_target_percent(context.symbol(i),0)
                    cash_for_sell -= stock_hold_now[i]
                    current_stoploss_stock.append(i)
                    print('日期:', date , '股票:', i, '出现止损状况')
        #-------------------------------------------止损模块END--------------------------------------------------
    
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰
        stock_to_sell = []
        stock_to_sell = current_stopwin_stock + current_stoploss_stock
        if not is_staging and cash_for_sell > 0:
            if len(positions) > 0:
                for instrument in positions.keys():
                    last_sale_date = positions[instrument].last_sale_date   #上次交易日期
                    delta_days = data.current_dt - last_sale_date  
                    hold_days = delta_days.days #持仓天数
                    # 股票实行t+1制度,必须使持仓天数大于0
                    if hold_days > 0:
                        equities = {e.symbol: e for e, p in context.portfolio.positions.items()}
                        instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                            lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
                        # print('rank order for sell %s' % instruments)
                        for instrument1 in instruments:
                            context.order_target(context.symbol(instrument1), 0)
                            cash_for_sell -= positions_1[instrument1]
                            if cash_for_sell <= 0:
                                break  
    
        # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - stock_hold_now.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - stock_hold_now.get(instrument, 0)
            if cash > 0:
                # 获取今天和过去两天的成交量
                volume_since_buy = data.history(context.symbol(instrument), 'volume', 3, '1d')
                close_price = data.current(context.symbol(instrument), 'close')  #当收盘价
                high_price = data.current(context.symbol(instrument), 'high')  #当天最高价
                # 冲高回落的股票不能买
                if ((volume_since_buy[2]/volume_since_buy[1] < 2.5) or (high_price/close_price<1.05)) and volume_since_buy[2]/volume_since_buy[0] > 1:
                    current_price = data.current(context.symbol(instrument), 'price')
                    amount = math.floor(cash / current_price - cash / current_price % 100)
                    context.order(context.symbol(instrument), amount)
                    return
    # 回测引擎:准备数据,只执行一次
    def m13_prepare_bigquant_run(context):
        pass
    
    # 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
    def m13_before_trading_start_bigquant_run(context, data):
        pass
    
    
    m1 = M.instruments.v2(
        start_date='2015-01-01',
        end_date='2019-12-31',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)-1
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=False
    )
    
    m33 = M.standardlize.v9(
        input_1=m2.data,
        standard_func='ZScoreNorm',
        columns_input='label'
    )
    
    m3 = M.input_features.v1(
        features="""close_0/mean(close_0,5)
    close_0/mean(close_0,10)
    close_0/mean(close_0,20)
    close_0/open_0
    open_0/mean(close_0,5)
    open_0/mean(close_0,10)
    open_0/mean(close_0,20)
    return_5
    return_10
    avg_amount_0/avg_amount_5
    rank_avg_amount_0/rank_avg_amount_5
    rank_return_0
    rank_return_5
    rank_return_0/rank_return_5
    pe_ttm_0
    
    
    
    
    
    
    
    
    """,
        m_cached=False
    )
    
    m12 = M.input_features.v1(
        features_ds=m3.data,
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    close_0
    high_1
    open_0
    low_0
    st_status_0"""
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m12.data,
        start_date='',
        end_date='',
        before_start_days=0
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m12.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m31 = M.standardlize.v9(
        input_1=m16.data,
        input_2=m3.data,
        standard_func='ZScoreNorm',
        columns_input='[]'
    )
    
    m7 = M.join.v3(
        data1=m33.data,
        data2=m31.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m19 = M.filter.v3(
        input_data=m7.data,
        expr='st_status_0==0 and low_0>high_1 and close_0>open_0',
        output_left_data=False
    )
    
    m26 = M.dl_convert_to_bin.v2(
        input_data=m19.data,
        features=m12.data,
        window_size=1,
        feature_clip=5,
        flatten=True,
        window_along_col='instrument'
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2020-01-01'),
        end_date=T.live_run_param('trading_date', '2021-11-19'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m12.data,
        start_date='',
        end_date='',
        before_start_days=0
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m12.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m34 = M.standardlize.v9(
        input_1=m18.data,
        input_2=m3.data,
        standard_func='ZScoreNorm',
        columns_input='[]'
    )
    
    m28 = M.filter.v3(
        input_data=m34.data,
        expr='st_status_0==0 and low_0>high_1+0.02 and close_0>open_0',
        output_left_data=False
    )
    
    m27 = M.dl_convert_to_bin.v2(
        input_data=m28.data,
        features=m12.data,
        window_size=1,
        feature_clip=5,
        flatten=True,
        window_along_col='instrument'
    )
    
    m6 = M.dl_layer_input.v1(
        shape='20',
        batch_shape='',
        dtype='float32',
        sparse=False,
        name=''
    )
    
    m8 = M.dl_layer_dense.v1(
        inputs=m6.data,
        units=256,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m21 = M.dl_layer_dropout.v1(
        inputs=m8.data,
        rate=0.1,
        noise_shape='',
        name=''
    )
    
    m20 = M.dl_layer_dense.v1(
        inputs=m21.data,
        units=128,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m22 = M.dl_layer_dropout.v1(
        inputs=m20.data,
        rate=0.1,
        noise_shape='',
        name=''
    )
    
    m23 = M.dl_layer_dense.v1(
        inputs=m22.data,
        units=1,
        activation='linear',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m4 = M.dl_model_init.v1(
        inputs=m6.data,
        outputs=m23.data
    )
    
    m5 = M.dl_model_train.v1(
        input_model=m4.data,
        training_data=m26.data,
        optimizer='Adam',
        loss='mean_squared_error',
        metrics='mse',
        batch_size=1024,
        epochs=20,
        custom_objects=m5_custom_objects_bigquant_run,
        n_gpus=0,
        verbose='2:每个epoch输出一行记录',
        m_cached=False
    )
    
    m11 = M.dl_model_predict.v1(
        trained_model=m5.data,
        input_data=m27.data,
        batch_size=1024,
        n_gpus=0,
        verbose='2:每个epoch输出一行记录'
    )
    
    m24 = M.cached.v3(
        input_1=m11.data,
        input_2=m28.data,
        run=m24_run_bigquant_run,
        post_run=m24_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m13 = M.trade.v4(
        instruments=m9.data,
        options_data=m24.data_1,
        start_date='',
        end_date='',
        initialize=m13_initialize_bigquant_run,
        handle_data=m13_handle_data_bigquant_run,
        prepare=m13_prepare_bigquant_run,
        before_trading_start=m13_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark=''
    )
    
    Epoch 1/20
    49/49 - 2s - loss: 1.7466 - mse: 1.7466
    Epoch 2/20
    49/49 - 1s - loss: 1.5581 - mse: 1.5581
    Epoch 3/20
    49/49 - 1s - loss: 1.5508 - mse: 1.5508
    Epoch 4/20
    49/49 - 1s - loss: 1.5387 - mse: 1.5387
    Epoch 5/20
    49/49 - 1s - loss: 1.5296 - mse: 1.5296
    Epoch 6/20
    49/49 - 1s - loss: 1.5314 - mse: 1.5314
    Epoch 7/20
    49/49 - 1s - loss: 1.5280 - mse: 1.5280
    Epoch 8/20
    49/49 - 1s - loss: 1.5285 - mse: 1.5285
    Epoch 9/20
    49/49 - 1s - loss: 1.5239 - mse: 1.5239
    Epoch 10/20
    49/49 - 1s - loss: 1.5219 - mse: 1.5219
    Epoch 11/20
    49/49 - 1s - loss: 1.5203 - mse: 1.5203
    Epoch 12/20
    49/49 - 1s - loss: 1.5208 - mse: 1.5208
    Epoch 13/20
    49/49 - 1s - loss: 1.5278 - mse: 1.5278
    Epoch 14/20
    49/49 - 1s - loss: 1.5177 - mse: 1.5177
    Epoch 15/20
    49/49 - 1s - loss: 1.5185 - mse: 1.5185
    Epoch 16/20
    49/49 - 1s - loss: 1.5179 - mse: 1.5179
    Epoch 17/20
    49/49 - 1s - loss: 1.5182 - mse: 1.5182
    Epoch 18/20
    49/49 - 1s - loss: 1.5157 - mse: 1.5157
    Epoch 19/20
    49/49 - 1s - loss: 1.5180 - mse: 1.5180
    Epoch 20/20
    49/49 - 1s - loss: 1.5133 - mse: 1.5133
    
    20/20 - 0s
    DataSource(8006d6958b844794aea8add7db008b8fT)
    
    日期: 2020-02-20 股票: 300417.SZA 出现止盈状况
    日期: 2020-02-28 股票: 600550.SHA 出现止盈状况
    日期: 2020-03-11 股票: 300654.SZA 出现止损状况
    日期: 2020-03-23 股票: 300056.SZA 出现止损状况
    日期: 2020-03-23 股票: 000850.SZA 出现止损状况
    日期: 2020-03-23 股票: 300340.SZA 出现止损状况
    日期: 2020-03-23 股票: 601199.SHA 出现止损状况
    日期: 2020-03-24 股票: 002887.SZA 出现止盈状况
    日期: 2020-03-30 股票: 300612.SZA 出现止损状况
    日期: 2020-03-30 股票: 600520.SHA 出现止损状况
    日期: 2020-03-31 股票: 002852.SZA 出现止盈状况
    日期: 2020-03-31 股票: 002790.SZA 出现止损状况
    日期: 2020-04-07 股票: 300004.SZA 出现止损状况
    日期: 2020-04-10 股票: 600785.SHA 出现止盈状况
    日期: 2020-04-13 股票: 603991.SHA 出现止盈状况
    日期: 2020-04-20 股票: 002876.SZA 出现止盈状况
    日期: 2020-04-21 股票: 300031.SZA 出现止盈状况
    日期: 2020-04-22 股票: 300087.SZA 出现止盈状况
    日期: 2020-04-24 股票: 002513.SZA 出现止损状况
    日期: 2020-04-30 股票: 600674.SHA 出现止盈状况
    日期: 2020-05-07 股票: 000715.SZA 出现止损状况
    日期: 2020-05-08 股票: 603369.SHA 出现止盈状况
    日期: 2020-05-13 股票: 300298.SZA 出现止盈状况
    日期: 2020-05-14 股票: 600729.SHA 出现止盈状况
    日期: 2020-05-14 股票: 603181.SHA 出现止盈状况
    日期: 2020-05-14 股票: 002743.SZA 出现止损状况
    日期: 2020-05-14 股票: 300498.SZA 出现止损状况
    日期: 2020-05-15 股票: 600880.SHA 出现止盈状况
    日期: 2020-05-20 股票: 300367.SZA 出现止损状况
    日期: 2020-05-25 股票: 300333.SZA 出现止损状况
    日期: 2020-05-25 股票: 000700.SZA 出现止损状况
    日期: 2020-06-01 股票: 002098.SZA 出现止损状况
    日期: 2020-06-02 股票: 000042.SZA 出现止盈状况
    日期: 2020-06-02 股票: 688025.SHA 出现止盈状况
    日期: 2020-06-02 股票: 300445.SZA 出现止盈状况
    日期: 2020-06-03 股票: 300703.SZA 出现止盈状况
    日期: 2020-06-04 股票: 300691.SZA 出现止盈状况
    日期: 2020-06-08 股票: 603871.SHA 出现止盈状况
    日期: 2020-06-08 股票: 300587.SZA 出现止盈状况
    日期: 2020-06-08 股票: 300277.SZA 出现止盈状况
    日期: 2020-06-11 股票: 002773.SZA 出现止盈状况
    日期: 2020-06-15 股票: 688399.SHA 出现止盈状况
    日期: 2020-06-16 股票: 603259.SHA 出现止盈状况
    日期: 2020-06-16 股票: 300036.SZA 出现止盈状况
    日期: 2020-06-22 股票: 300312.SZA 出现止损状况
    日期: 2020-06-24 股票: 002801.SZA 出现止盈状况
    日期: 2020-06-24 股票: 002514.SZA 出现止损状况
    日期: 2020-07-06 股票: 603579.SHA 出现止盈状况
    日期: 2020-07-06 股票: 002463.SZA 出现止盈状况
    日期: 2020-07-06 股票: 002567.SZA 出现止盈状况
    日期: 2020-07-07 股票: 600262.SHA 出现止盈状况
    日期: 2020-07-07 股票: 002303.SZA 出现止盈状况
    日期: 2020-07-08 股票: 300127.SZA 出现止盈状况
    日期: 2020-07-08 股票: 002249.SZA 出现止盈状况
    日期: 2020-07-08 股票: 600531.SHA 出现止盈状况
    日期: 2020-07-10 股票: 601698.SHA 出现止盈状况
    日期: 2020-07-13 股票: 603186.SHA 出现止盈状况
    日期: 2020-07-13 股票: 603908.SHA 出现止盈状况
    日期: 2020-07-14 股票: 603136.SHA 出现止盈状况
    日期: 2020-07-14 股票: 002851.SZA 出现止盈状况
    日期: 2020-07-20 股票: 603298.SHA 出现止盈状况
    日期: 2020-07-20 股票: 002360.SZA 出现止盈状况
    日期: 2020-07-20 股票: 600370.SHA 出现止盈状况
    日期: 2020-07-23 股票: 603658.SHA 出现止盈状况
    日期: 2020-08-03 股票: 002173.SZA 出现止盈状况
    日期: 2020-08-05 股票: 002729.SZA 出现止盈状况
    日期: 2020-08-07 股票: 002847.SZA 出现止盈状况
    日期: 2020-08-12 股票: 300561.SZA 出现止损状况
    日期: 2020-08-17 股票: 300401.SZA 出现止盈状况
    日期: 2020-08-17 股票: 002163.SZA 出现止盈状况
    日期: 2020-08-24 股票: 002740.SZA 出现止损状况
    日期: 2020-08-26 股票: 300056.SZA 出现止盈状况
    日期: 2020-09-01 股票: 002422.SZA 出现止盈状况
    日期: 2020-09-04 股票: 300752.SZA 出现止盈状况
    日期: 2020-09-08 股票: 300112.SZA 出现止盈状况
    日期: 2020-09-09 股票: 000929.SZA 出现止盈状况
    日期: 2020-09-09 股票: 000519.SZA 出现止盈状况
    日期: 2020-09-09 股票: 688123.SHA 出现止损状况
    日期: 2020-09-10 股票: 002685.SZA 出现止损状况
    日期: 2020-09-14 股票: 603679.SHA 出现止损状况
    日期: 2020-09-17 股票: 002407.SZA 出现止盈状况
    日期: 2020-09-22 股票: 002079.SZA 出现止损状况
    日期: 2020-09-23 股票: 300623.SZA 出现止盈状况
    日期: 2020-09-24 股票: 600067.SHA 出现止盈状况
    日期: 2020-09-24 股票: 000782.SZA 出现止损状况
    日期: 2020-09-24 股票: 600052.SHA 出现止损状况
    日期: 2020-09-28 股票: 002568.SZA 出现止盈状况
    日期: 2020-09-28 股票: 600067.SHA 出现止损状况
    日期: 2020-09-29 股票: 002674.SZA 出现止损状况
    日期: 2020-10-09 股票: 600291.SHA 出现止损状况
    日期: 2020-10-13 股票: 002930.SZA 出现止盈状况
    日期: 2020-10-16 股票: 002607.SZA 出现止盈状况
    日期: 2020-10-21 股票: 600738.SHA 出现止盈状况
    日期: 2020-10-23 股票: 000039.SZA 出现止盈状况
    日期: 2020-10-30 股票: 601116.SHA 出现止损状况
    日期: 2020-10-30 股票: 601069.SHA 出现止损状况
    日期: 2020-11-02 股票: 688037.SHA 出现止盈状况
    日期: 2020-11-02 股票: 600419.SHA 出现止损状况
    日期: 2020-11-04 股票: 600418.SHA 出现止盈状况
    日期: 2020-11-12 股票: 603222.SHA 出现止盈状况
    日期: 2020-11-19 股票: 300622.SZA 出现止盈状况
    日期: 2020-11-23 股票: 002128.SZA 出现止盈状况
    日期: 2020-11-25 股票: 002277.SZA 出现止损状况
    日期: 2020-11-27 股票: 603167.SHA 出现止损状况
    日期: 2020-12-07 股票: 600679.SHA 出现止盈状况
    日期: 2020-12-07 股票: 000850.SZA 出现止盈状况
    日期: 2020-12-07 股票: 300058.SZA 出现止损状况
    日期: 2020-12-10 股票: 600792.SHA 出现止盈状况
    日期: 2020-12-10 股票: 600793.SHA 出现止损状况
    日期: 2020-12-11 股票: 002686.SZA 出现止盈状况
    日期: 2020-12-11 股票: 300208.SZA 出现止盈状况
    日期: 2020-12-15 股票: 002756.SZA 出现止盈状况
    日期: 2020-12-21 股票: 000016.SZA 出现止盈状况
    日期: 2020-12-22 股票: 002104.SZA 出现止损状况
    日期: 2020-12-22 股票: 603788.SHA 出现止损状况
    日期: 2020-12-22 股票: 000985.SZA 出现止损状况
    日期: 2020-12-23 股票: 003010.SZA 出现止损状况
    日期: 2020-12-24 股票: 002017.SZA 出现止损状况
    日期: 2020-12-28 股票: 300541.SZA 出现止损状况
    日期: 2020-12-31 股票: 300750.SZA 出现止盈状况
    日期: 2021-01-04 股票: 603369.SHA 出现止盈状况
    日期: 2021-01-05 股票: 002918.SZA 出现止盈状况
    日期: 2021-01-06 股票: 603388.SHA 出现止损状况
    日期: 2021-01-06 股票: 000961.SZA 出现止损状况
    日期: 2021-01-07 股票: 300458.SZA 出现止损状况
    日期: 2021-01-08 股票: 000767.SZA 出现止盈状况
    日期: 2021-01-11 股票: 300697.SZA 出现止损状况
    日期: 2021-01-13 股票: 300083.SZA 出现止盈状况
    日期: 2021-01-13 股票: 601188.SHA 出现止损状况
    日期: 2021-01-13 股票: 002515.SZA 出现止损状况
    日期: 2021-01-13 股票: 002689.SZA 出现止损状况
    日期: 2021-01-13 股票: 000411.SZA 出现止损状况
    日期: 2021-01-13 股票: 002765.SZA 出现止损状况
    日期: 2021-01-14 股票: 000513.SZA 出现止损状况
    日期: 2021-01-20 股票: 300294.SZA 出现止损状况
    日期: 2021-01-25 股票: 000919.SZA 出现止损状况
    日期: 2021-01-26 股票: 600629.SHA 出现止损状况
    日期: 2021-01-29 股票: 601216.SHA 出现止盈状况
    日期: 2021-01-29 股票: 002963.SZA 出现止损状况
    日期: 2021-01-29 股票: 603918.SHA 出现止损状况
    日期: 2021-02-01 股票: 600804.SHA 出现止损状况
    日期: 2021-02-01 股票: 600896.SHA 出现止损状况
    日期: 2021-02-01 股票: 300230.SZA 出现止损状况
    日期: 2021-02-04 股票: 300601.SZA 出现止盈状况
    日期: 2021-02-04 股票: 600387.SHA 出现止损状况
    日期: 2021-02-04 股票: 002658.SZA 出现止损状况
    日期: 2021-02-05 股票: 002288.SZA 出现止损状况
    日期: 2021-02-18 股票: 603360.SHA 出现止损状况
    日期: 2021-02-19 股票: 600477.SHA 出现止盈状况
    日期: 2021-02-23 股票: 600267.SHA 出现止盈状况
    日期: 2021-03-02 股票: 300327.SZA 出现止盈状况
    日期: 2021-03-04 股票: 000807.SZA 出现止盈状况
    日期: 2021-03-08 股票: 600885.SHA 出现止损状况
    日期: 2021-03-12 股票: 000966.SZA 出现止盈状况
    日期: 2021-03-15 股票: 600483.SHA 出现止盈状况
    日期: 2021-03-15 股票: 601388.SHA 出现止盈状况
    日期: 2021-03-16 股票: 002741.SZA 出现止盈状况
    日期: 2021-03-19 股票: 300129.SZA 出现止盈状况
    日期: 2021-03-22 股票: 600332.SHA 出现止损状况
    日期: 2021-03-22 股票: 600855.SHA 出现止损状况
    日期: 2021-03-24 股票: 002836.SZA 出现止损状况
    日期: 2021-03-25 股票: 002177.SZA 出现止盈状况
    日期: 2021-03-26 股票: 300669.SZA 出现止盈状况
    日期: 2021-03-29 股票: 000528.SZA 出现止盈状况
    日期: 2021-03-29 股票: 601901.SHA 出现止损状况
    日期: 2021-03-30 股票: 300788.SZA 出现止盈状况
    日期: 2021-03-30 股票: 300669.SZA 出现止损状况
    日期: 2021-04-06 股票: 600479.SHA 出现止盈状况
    日期: 2021-04-06 股票: 300460.SZA 出现止盈状况
    日期: 2021-04-14 股票: 300196.SZA 出现止盈状况
    日期: 2021-04-21 股票: 300384.SZA 出现止盈状况
    日期: 2021-04-22 股票: 688568.SHA 出现止盈状况
    日期: 2021-04-26 股票: 688513.SHA 出现止损状况
    日期: 2021-04-26 股票: 002789.SZA 出现止损状况
    日期: 2021-04-27 股票: 600737.SHA 出现止盈状况
    日期: 2021-04-28 股票: 688577.SHA 出现止盈状况
    日期: 2021-04-28 股票: 603638.SHA 出现止盈状况
    日期: 2021-04-30 股票: 300900.SZA 出现止损状况
    日期: 2021-04-30 股票: 688030.SHA 出现止损状况
    日期: 2021-05-06 股票: 002661.SZA 出现止损状况
    日期: 2021-05-10 股票: 002889.SZA 出现止盈状况
    日期: 2021-05-10 股票: 000960.SZA 出现止盈状况
    日期: 2021-05-10 股票: 000426.SZA 出现止盈状况
    日期: 2021-05-10 股票: 300651.SZA 出现止损状况
    日期: 2021-05-11 股票: 600626.SHA 出现止盈状况
    日期: 2021-05-11 股票: 300247.SZA 出现止盈状况
    日期: 2021-05-20 股票: 300953.SZA 出现止盈状况
    日期: 2021-05-20 股票: 688004.SHA 出现止损状况
    日期: 2021-05-24 股票: 603566.SHA 出现止盈状况
    日期: 2021-05-27 股票: 601567.SHA 出现止盈状况
    日期: 2021-06-08 股票: 000573.SZA 出现止盈状况
    日期: 2021-06-09 股票: 300965.SZA 出现止盈状况
    日期: 2021-06-15 股票: 300565.SZA 出现止损状况
    日期: 2021-06-15 股票: 000425.SZA 出现止损状况
    日期: 2021-06-17 股票: 605100.SHA 出现止损状况
    日期: 2021-06-21 股票: 605198.SHA 出现止损状况
    日期: 2021-06-22 股票: 300847.SZA 出现止盈状况
    日期: 2021-06-23 股票: 300545.SZA 出现止盈状况
    日期: 2021-06-24 股票: 688579.SHA 出现止损状况
    日期: 2021-06-30 股票: 600800.SHA 出现止损状况
    日期: 2021-06-30 股票: 002310.SZA 出现止损状况
    日期: 2021-07-05 股票: 002340.SZA 出现止盈状况
    日期: 2021-07-05 股票: 603195.SHA 出现止盈状况
    日期: 2021-07-08 股票: 002562.SZA 出现止损状况
    日期: 2021-07-12 股票: 600711.SHA 出现止盈状况
    日期: 2021-07-13 股票: 688639.SHA 出现止盈状况
    日期: 2021-07-15 股票: 605117.SHA 出现止盈状况
    日期: 2021-07-15 股票: 603919.SHA 出现止盈状况
    日期: 2021-07-19 股票: 300229.SZA 出现止盈状况
    日期: 2021-07-21 股票: 600749.SHA 出现止盈状况
    日期: 2021-07-22 股票: 688106.SHA 出现止盈状况
    日期: 2021-07-22 股票: 000541.SZA 出现止盈状况
    日期: 2021-07-22 股票: 300432.SZA 出现止盈状况
    日期: 2021-07-23 股票: 603868.SHA 出现止损状况
    日期: 2021-07-26 股票: 000584.SZA 出现止损状况
    日期: 2021-07-27 股票: 300877.SZA 出现止损状况
    日期: 2021-07-28 股票: 603106.SHA 出现止损状况
    日期: 2021-07-29 股票: 300322.SZA 出现止盈状况
    日期: 2021-07-30 股票: 688068.SHA 出现止盈状况
    日期: 2021-08-03 股票: 300488.SZA 出现止盈状况
    日期: 2021-08-03 股票: 000595.SZA 出现止损状况
    日期: 2021-08-05 股票: 002977.SZA 出现止盈状况
    日期: 2021-08-05 股票: 000572.SZA 出现止盈状况
    日期: 2021-08-10 股票: 002280.SZA 出现止盈状况
    日期: 2021-08-13 股票: 300932.SZA 出现止盈状况
    日期: 2021-08-13 股票: 603013.SHA 出现止盈状况
    日期: 2021-08-17 股票: 002240.SZA 出现止损状况
    日期: 2021-08-20 股票: 600727.SHA 出现止盈状况
    日期: 2021-08-20 股票: 600875.SHA 出现止盈状况
    日期: 2021-08-23 股票: 000983.SZA 出现止盈状况
    日期: 2021-08-23 股票: 003002.SZA 出现止损状况
    日期: 2021-08-25 股票: 300902.SZA 出现止盈状况
    日期: 2021-08-26 股票: 601003.SHA 出现止盈状况
    日期: 2021-08-27 股票: 300328.SZA 出现止盈状况
    日期: 2021-08-27 股票: 300134.SZA 出现止损状况
    日期: 2021-09-01 股票: 002038.SZA 出现止盈状况
    日期: 2021-09-08 股票: 002624.SZA 出现止盈状况
    日期: 2021-09-15 股票: 002096.SZA 出现止盈状况
    日期: 2021-09-15 股票: 603585.SHA 出现止盈状况
    日期: 2021-09-16 股票: 300005.SZA 出现止盈状况
    日期: 2021-09-24 股票: 300542.SZA 出现止盈状况
    日期: 2021-09-27 股票: 002877.SZA 出现止损状况
    日期: 2021-09-29 股票: 688215.SHA 出现止损状况
    日期: 2021-09-29 股票: 002235.SZA 出现止损状况
    日期: 2021-10-11 股票: 601139.SHA 出现止损状况
    日期: 2021-10-12 股票: 301017.SZA 出现止盈状况
    日期: 2021-10-12 股票: 605090.SHA 出现止损状况
    日期: 2021-10-13 股票: 600420.SHA 出现止盈状况
    日期: 2021-10-14 股票: 603606.SHA 出现止盈状况
    日期: 2021-10-15 股票: 002945.SZA 出现止损状况
    日期: 2021-10-15 股票: 002949.SZA 出现止损状况
    日期: 2021-10-21 股票: 603721.SHA 出现止损状况
    日期: 2021-10-22 股票: 600536.SHA 出现止盈状况
    日期: 2021-10-22 股票: 603586.SHA 出现止损状况
    日期: 2021-10-22 股票: 300871.SZA 出现止损状况
    日期: 2021-10-25 股票: 601058.SHA 出现止盈状况
    日期: 2021-10-25 股票: 003007.SZA 出现止损状况
    日期: 2021-10-26 股票: 688619.SHA 出现止损状况
    日期: 2021-10-27 股票: 002678.SZA 出现止损状况
    日期: 2021-10-27 股票: 688309.SHA 出现止损状况
    日期: 2021-10-27 股票: 300836.SZA 出现止损状况
    日期: 2021-10-27 股票: 600207.SHA 出现止损状况
    日期: 2021-10-28 股票: 603023.SHA 出现止损状况
    日期: 2021-11-04 股票: 603398.SHA 出现止盈状况
    日期: 2021-11-04 股票: 600305.SHA 出现止盈状况
    日期: 2021-11-08 股票: 300831.SZA 出现止损状况
    日期: 2021-11-09 股票: 000753.SZA 出现止盈状况
    日期: 2021-11-11 股票: 002965.SZA 出现止盈状况
    日期: 2021-11-11 股票: 600048.SHA 出现止盈状况
    日期: 2021-11-12 股票: 002020.SZA 出现止盈状况
    日期: 2021-11-17 股票: 002056.SZA 出现止盈状况
    
    • 收益率44.74%
    • 年化收益率22.67%
    • 基准收益率19.37%
    • 阿尔法0.16
    • 贝塔0.49
    • 夏普比率1.1
    • 胜率0.61
    • 盈亏比1.07
    • 收益波动率17.28%
    • 信息比率0.04
    • 最大回撤13.56%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-023f457cafb34aea9db40b6659f113f5"}/bigcharts-data-end