{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-274:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-274:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-281:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-119:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-136:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-288:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-136:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-119:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-281:input_data","from_node_id":"-274:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-281:data"},{"to_node_id":"-295:input_data","from_node_id":"-288:data"},{"to_node_id":"-86:input_data","from_node_id":"-295:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-119:model"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-02-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"000021.SZA\n002460.SZA\n000027.SZA\n000050.SZA\n000333.SZA\n000338.SZA\n000521.SZA\n000538.SZA\n000615.SZA\n000625.SZA\n000626.SZA\n000651.SZA\n000661.SZA\n000713.SZA\n000733.SZA\n000768.SZA\n000798.SZA\n000858.SZA\n000928.SZA\n000963.SZA\n000995.SZA\n002007.SZA\n002055.SZA\n002074.SZA\n002092.SZA\n002125.SZA\n002151.SZA\n002156.SZA\n002162.SZA\n002163.SZA\n002179.SZA\n002184.SZA\n002185.SZA\n002190.SZA\n002192.SZA\n002221.SZA\n002237.SZA\n002240.SZA\n002245.SZA\n002271.SZA\n002340.SZA\n002352.SZA\n002371.SZA\n002386.SZA\n002389.SZA\n002407.SZA\n002415.SZA\n002430.SZA\n002466.SZA\n002497.SZA\n002529.SZA\n002557.SZA\n002594.SZA\n002601.SZA\n002607.SZA\n002625.SZA\n002668.SZA\n002709.SZA\n002756.SZA\n002799.SZA\n002812.SZA\n002813.SZA\n002821.SZA\n002906.SZA\n002920.SZA\n300003.SZA\n300014.SZA\n300015.SZA\n300034.SZA\n300037.SZA\n300059.SZA\n300122.SZA\n300124.SZA\n300142.SZA\n300244.SZA\n300251.SZA\n300274.SZA\n300316.SZA\n300339.SZA\n300340.SZA\n300347.SZA\n300357.SZA\n300433.SZA\n300450.SZA\n300477.SZA\n300496.SZA\n300529.SZA\n300558.SZA\n300567.SZA\n300576.SZA\n300581.SZA\n300595.SZA\n300601.SZA\n300604.SZA\n300623.SZA\n300648.SZA\n300661.SZA\n300685.SZA\n300690.SZA\n300699.SZA\n300719.SZA\n300722.SZA\n300726.SZA\n300750.SZA\n300759.SZA\n300760.SZA\n300763.SZA\n300769.SZA\n600016.SHA\n600031.SHA\n600089.SHA\n600110.SHA\n600183.SHA\n600196.SHA\n600198.SHA\n600237.SHA\n600256.SHA\n600276.SHA\n600295.SHA\n600305.SHA\n600309.SHA\n600316.SHA\n600325.SHA\n600392.SHA\n600398.SHA\n600418.SHA\n600438.SHA\n600460.SHA\n600499.SHA\n600516.SHA\n600570.SHA\n600584.SHA\n600585.SHA\n600596.SHA\n600660.SHA\n600685.SHA\n600690.SHA\n600699.SHA\n600703.SHA\n600733.SHA\n600745.SHA\n600760.SHA\n600763.SHA\n600805.SHA\n600809.SHA\n600862.SHA\n600864.SHA\n600882.SHA\n600886.SHA\n600887.SHA\n600893.SHA\n600977.SHA\n600988.SHA\n601012.SHA\n601100.SHA\n601611.SHA\n601633.SHA\n601865.SHA\n601866.SHA\n601869.SHA\n601888.SHA\n601899.SHA\n601901.SHA\n601919.SHA\n603005.SHA\n603019.SHA\n603025.SHA\n603027.SHA\n603185.SHA\n603197.SHA\n603259.SHA\n603260.SHA\n603267.SHA\n603501.SHA\n603517.SHA\n603605.SHA\n603650.SHA\n603678.SHA\n603707.SHA\n603799.SHA\n603806.SHA\n603882.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-02-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-03-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"000021.SZA\n002460.SZA\n000027.SZA\n000050.SZA\n000333.SZA\n000338.SZA\n000521.SZA\n000538.SZA\n000615.SZA\n000625.SZA\n000626.SZA\n000651.SZA\n000661.SZA\n000713.SZA\n000733.SZA\n000768.SZA\n000798.SZA\n000858.SZA\n000928.SZA\n000963.SZA\n000995.SZA\n002007.SZA\n002055.SZA\n002074.SZA\n002092.SZA\n002125.SZA\n002151.SZA\n002156.SZA\n002162.SZA\n002163.SZA\n002179.SZA\n002184.SZA\n002185.SZA\n002190.SZA\n002192.SZA\n002221.SZA\n002237.SZA\n002240.SZA\n002245.SZA\n002271.SZA\n002340.SZA\n002352.SZA\n002371.SZA\n002386.SZA\n002389.SZA\n002407.SZA\n002415.SZA\n002430.SZA\n002466.SZA\n002497.SZA\n002529.SZA\n002557.SZA\n002594.SZA\n002601.SZA\n002607.SZA\n002625.SZA\n002668.SZA\n002709.SZA\n002756.SZA\n002799.SZA\n002812.SZA\n002813.SZA\n002821.SZA\n002906.SZA\n002920.SZA\n300003.SZA\n300014.SZA\n300015.SZA\n300034.SZA\n300037.SZA\n300059.SZA\n300122.SZA\n300124.SZA\n300142.SZA\n300244.SZA\n300251.SZA\n300274.SZA\n300316.SZA\n300339.SZA\n300340.SZA\n300347.SZA\n300357.SZA\n300433.SZA\n300450.SZA\n300477.SZA\n300496.SZA\n300529.SZA\n300558.SZA\n300567.SZA\n300576.SZA\n300581.SZA\n300595.SZA\n300601.SZA\n300604.SZA\n300623.SZA\n300648.SZA\n300661.SZA\n300685.SZA\n300690.SZA\n300699.SZA\n300719.SZA\n300722.SZA\n300726.SZA\n300750.SZA\n300759.SZA\n300760.SZA\n300763.SZA\n300769.SZA\n600016.SHA\n600031.SHA\n600089.SHA\n600110.SHA\n600183.SHA\n600196.SHA\n600198.SHA\n600237.SHA\n600256.SHA\n600276.SHA\n600295.SHA\n600305.SHA\n600309.SHA\n600316.SHA\n600325.SHA\n600392.SHA\n600398.SHA\n600418.SHA\n600438.SHA\n600460.SHA\n600499.SHA\n600516.SHA\n600570.SHA\n600584.SHA\n600585.SHA\n600596.SHA\n600660.SHA\n600685.SHA\n600690.SHA\n600699.SHA\n600703.SHA\n600733.SHA\n600745.SHA\n600760.SHA\n600763.SHA\n600805.SHA\n600809.SHA\n600862.SHA\n600864.SHA\n600882.SHA\n600886.SHA\n600887.SHA\n600893.SHA\n600977.SHA\n600988.SHA\n601012.SHA\n601100.SHA\n601611.SHA\n601633.SHA\n601865.SHA\n601866.SHA\n601869.SHA\n601888.SHA\n601899.SHA\n601901.SHA\n601919.SHA\n603005.SHA\n603019.SHA\n603025.SHA\n603027.SHA\n603185.SHA\n603197.SHA\n603259.SHA\n603260.SHA\n603267.SHA\n603501.SHA\n603517.SHA\n603605.SHA\n603650.SHA\n603678.SHA\n603707.SHA\n603799.SHA\n603806.SHA\n603882.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-274","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-274"},{"name":"features","node_id":"-274"}],"output_ports":[{"name":"data","node_id":"-274"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"60","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-119","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-119"},{"name":"features","node_id":"-119"},{"name":"test_ds","node_id":"-119"},{"name":"base_model","node_id":"-119"}],"output_ports":[{"name":"model","node_id":"-119"},{"name":"feature_gains","node_id":"-119"},{"name":"m_lazy_run","node_id":"-119"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-136","module_id":"BigQuantSpace.hftrade.hftrade-v2","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 交易引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n df = DataSource(\"bar1d_index_CN_STOCK_A\").read(instruments=\"000300.HIX\",start_date=\"2021-01-01\",end_date=\"2021-08-01\")\n df[\"ma\"] = df.close.rolling(5).mean()\n df[\"signal\"] = df.apply(lambda x:1 if x.close>x.ma else 0,axis=1)\n df[\"signal\"] = df[\"signal\"].shift(1) #取昨日的收盘信号\n df=df[[\"date\",\"signal\"]]\n #信号数据\n context.signal_df = df\n #每支股票占比\n context.order_pct = 0.01\n #获取预测股票集\n context.to_buy = context.options['data'].read()\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 交易引擎:每个单位时间开盘前调用一次。\ndef bigquant_run(context, data):\n now = data.current_dt.strftime('%Y-%m-%d')\n context.today = data.current_dt.strftime('%Y-%m-%d')\n context.signal = context.signal_df[context.signal_df.date==now][\"signal\"].iloc[0]\n context.handle_flag = 0 #由于是分钟回测,每天只需要处理一次买卖\n context.sold_stock_list = []\n context.position_check = context.get_positions()\n print('日期{} 持仓 {} -----------'.format(now, context.position_check))\n","type":"Literal","bound_global_parameter":null},{"name":"handle_tick","value":"# 交易引擎:bar数据处理函数,每个单位执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"#卖出函数\ndef sell_stock(context,data,msg):\n #获取当前所有持仓\n stock_hold_now = context.get_account_positions()\n for instr in stock_hold_now:\n if instr not in context.sold_stock_list:\n #卖出可用仓位(可能有今仓)\n position = context.get_position(instr).avail_qty\n if(position>0):\n #最新价格\n price = data.current(instr, 'close')\n context.order(instr, -position, price, order_type=OrderType.MARKET)\n context.sold_stock_list.append(instr)\n print(\"{}卖出{} {}\".format(msg,instr,position))\n\n# 交易引擎:bar数据处理函数,每个单位执行一次\ndef bigquant_run(context, data):\n \n #signal为0开盘卖\n if context.signal == 0:\n msg = context.today+\" 开盘\"\n sell_stock(context,data,msg)\n \n current_stopwin_stock = []\n current_stoploss_stock = []\n if len(context.position_check) > 0:\n #------------------------START:止赢止损模块(含建仓期)---------------\n positions_cost={e:p.cost_price for e,p in context.get_positions().items()}\n avail_positions = {e: p.avail_qty for e, p in context.get_positions().items()}\n for instrument in positions_cost.keys():\n s = context.get_position(instrument).cost_price\n stock_cost=positions_cost[instrument]\n stock_market_price=data.current(context.symbol(instrument),'price')\n if stock_market_price/stock_cost-1>=0.05 and avail_positions[instrument] != 0:\n context.order_target(instrument, 0, order_type=OrderType.MARKET)\n print('止盈成功, 止盈标的{}'.format(instrument))\n current_stopwin_stock.append(instrument)\n elif stock_market_price/stock_cost-1 <= -0.02 and avail_positions[instrument] != 0:\n context.order_target(instrument, 0, order_type=OrderType.MARKET)\n print('止损成功, 止损标的{}'.format(instrument))\n current_stoploss_stock.append(instrument)\n if len(current_stopwin_stock)>0:\n# print(context.today,'止盈股票列表',current_stopwin_stock)\n context.sold_stock_list += current_stopwin_stock\n if len(current_stoploss_stock)>0:\n# print(context.today,'止损股票列表',current_stoploss_stock)\n context.sold_stock_list += current_stoploss_stock\n #--------------------------END: 止赢止损模块--------------------------\n \n\n #signal为1尾盘卖\n if context.signal == 1:\n cur_date = data.current_dt\n cur_hm = cur_date.strftime('%H:%M')\n if(cur_hm==\"14:55\"):\n msg = str(cur_date)+\" 尾盘\"\n sell_stock(context,data,msg)\n \n #每天只处理一次\n if context.handle_flag==1:\n return\n \n #买入预测集的前5只股票\n now_data = context.to_buy[context.to_buy['date']==context.today]\n today_to_buy = []\n if not now_data.empty:\n today_to_buy = now_data.instrument[:5].to_list()\n print(context.today,\"=======早盘计划买入股票 {}\".format(today_to_buy))\n \n # 获取账户资金\n total_portfolio = context.portfolio.portfolio_value\n\n for instr in today_to_buy:\n if instr not in context.sold_stock_list:\n #最新价格\n price = data.current(instr, 'close')\n\n #计算买入此股票的数量,不要超过总资金的某个比例\n context.order_value(instr, total_portfolio*context.order_pct, price, order_type=OrderType.MARKET)\n print(\"买入{}\".format(instr))\n \n context.handle_flag = 1\n\n\n \n\n","type":"Literal","bound_global_parameter":null},{"name":"handle_trade","value":"# 交易引擎:成交回报处理函数,每个成交发生时执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_order","value":"# 交易引擎:委托回报处理函数,每个委托变化时执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"after_trading","value":"# 交易引擎:盘后处理函数,每日盘后执行一次\ndef bigquant_run(context, data):\n pass\n\n","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"frequency","value":"minute","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":1,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"disable_cache","value":"False","type":"Literal","bound_global_parameter":null},{"name":"replay_bdb","value":"False","type":"Literal","bound_global_parameter":null},{"name":"show_debug_info","value":"False","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-136"},{"name":"options_data","node_id":"-136"},{"name":"history_ds","node_id":"-136"},{"name":"benchmark_ds","node_id":"-136"}],"output_ports":[{"name":"raw_perf","node_id":"-136"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='695,-14,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='864,597,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1078,75,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,465,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-274' Position='381,188,200,200'/><node_position Node='-281' Position='385,280,200,200'/><node_position Node='-288' Position='1078,236,200,200'/><node_position Node='-295' Position='1081,327,200,200'/><node_position Node='-119' Position='686.9431762695312,487.5245056152344,200,200'/><node_position Node='-136' Position='516.2563095092773,796.8944702148438,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-10-23 22:12:44.874218] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-10-23 22:12:44.881347] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:44.883171] INFO: moduleinvoker: instruments.v2 运行完成[0.008965s].
[2022-10-23 22:12:44.893581] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-10-23 22:12:44.901155] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:44.904229] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.01064s].
[2022-10-23 22:12:44.911597] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-10-23 22:12:44.926660] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:44.929949] INFO: moduleinvoker: input_features.v1 运行完成[0.018376s].
[2022-10-23 22:12:44.947621] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-10-23 22:12:44.954486] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:44.956182] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.008588s].
[2022-10-23 22:12:44.964014] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-10-23 22:12:44.969570] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:44.971696] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.00768s].
[2022-10-23 22:12:44.982145] INFO: moduleinvoker: join.v3 开始运行..
[2022-10-23 22:12:44.988623] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:44.990476] INFO: moduleinvoker: join.v3 运行完成[0.008332s].
[2022-10-23 22:12:45.000752] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-10-23 22:12:45.009532] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:45.013670] INFO: moduleinvoker: dropnan.v1 运行完成[0.012918s].
[2022-10-23 22:12:45.027108] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-10-23 22:12:45.039497] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:45.154652] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.127581s].
[2022-10-23 22:12:45.161607] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-10-23 22:12:45.169052] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:45.170833] INFO: moduleinvoker: instruments.v2 运行完成[0.009235s].
[2022-10-23 22:12:45.185136] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-10-23 22:12:45.191377] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:45.193471] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.008352s].
[2022-10-23 22:12:45.203673] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-10-23 22:12:45.211694] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:45.215438] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.011775s].
[2022-10-23 22:12:45.230578] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-10-23 22:12:45.237824] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:45.240575] INFO: moduleinvoker: dropnan.v1 运行完成[0.010001s].
[2022-10-23 22:12:45.253082] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-10-23 22:12:45.735529] INFO: StockRanker预测: /y_2020 ..
[2022-10-23 22:12:46.215389] INFO: StockRanker预测: /y_2021 ..
[2022-10-23 22:12:46.778625] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[1.525543s].
[2022-10-23 22:12:46.813661] INFO: moduleinvoker: hfbacktest.v1 开始运行..
[2022-10-23 22:12:46.820819] INFO: hfbacktest: biglearning V1.4.19
[2022-10-23 22:12:46.823367] INFO: hfbacktest: bigtrader v1.9.8 2022-10-10
[2022-10-23 22:12:46.846810] INFO: moduleinvoker: cached.v2 开始运行..
[2022-10-23 22:12:46.853967] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:46.855688] INFO: moduleinvoker: cached.v2 运行完成[0.008898s].
[2022-10-23 22:12:46.959587] INFO: moduleinvoker: cached.v2 开始运行..
[2022-10-23 22:12:46.967030] INFO: moduleinvoker: 命中缓存
[2022-10-23 22:12:46.968752] INFO: moduleinvoker: cached.v2 运行完成[0.009186s].
[2022-10-23 22:12:47.495910] ERROR: moduleinvoker: module name: hfbacktest, module version: v1, trackeback: AttributeError: 'NoneType' object has no attribute 'get_value'
[2022-10-23 22:12:47.504464] ERROR: moduleinvoker: module name: hftrade, module version: v2, trackeback: AttributeError: 'NoneType' object has no attribute 'get_value'
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-0766af1a164f4f5584a6e3b2ed950468"}/bigcharts-data-end
日期2021-02-01 持仓 {} -----------
2021-02-01 =======早盘计划买入股票 ['000661.SZA', '600584.SHA', '600660.SHA', '603019.SHA', '002179.SZA']
2022-10-23 22:12:47.495129 strategy strategy exception:Traceback (most recent call last):
File "bigtrader/strategy/engine.py", line 713, in bigtrader2.bigtrader.strategy.engine.StrategyEngine._call_strategy_func
File "bigtrader/strategy/strategy_base.py", line 2251, in bigtrader2.bigtrader.strategy.strategy_base.StrategyBase.call_handle_data
File "<ipython-input-9-ee34edabea57>", line 108, in m6_handle_data_bigquant_run
price = data.current(instr, 'close')
File "/var/app/enabled/bigtrader2/bigtrader/protocol.py", line 285, in current
return self.__data_engine.get_current_value(asset, curr_dt, fields)
File "bigtrader/mdata/engine.py", line 690, in bigtrader2.bigtrader.mdata.engine.DataEngine._get_minute_value_from_df
AttributeError: 'NoneType' object has no attribute 'get_value'
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-9-ee34edabea57> in <module>
617 )
618
--> 619 m6 = M.hftrade.v2(
620 instruments=m9.data,
621 options_data=m8.predictions,
<ipython-input-9-ee34edabea57> in m6_handle_data_bigquant_run(context, data)
106 if instr not in context.sold_stock_list:
107 #最新价格
--> 108 price = data.current(instr, 'close')
109
110 #计算买入此股票的数量,不要超过总资金的某个比例
AttributeError: 'NoneType' object has no attribute 'get_value'