复制链接
克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-4567:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-1262:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-10865:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-4577:input_data","from_node_id":"-238:data"},{"to_node_id":"-10245:raw_perf","from_node_id":"-10865:raw_perf"},{"to_node_id":"-10865:options_data","from_node_id":"-1262:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"-4567:data"},{"to_node_id":"-86:input_data","from_node_id":"-4577:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000500.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n\n\nhf_value_diff_large_order\nhf_close_net_inflow_volume_rate\nhf_close_net_inflow_value_rate\nhf_volume_diff_large_order\nhf_close_netinflow_rate_med_order_act\nhf_close_sell_volume_med_order\nhf_close_volume_ask\nhf_close_netinflow_rate_small_order_act\nhf_close_sell_volume_small_order\nhf_close_buy_volume_small_order_act\nhf_close_buy_volume_med_order_act\nhf_close_sell_volume_large_order","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"40","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.2","type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-06-07","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-11-28","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-10865","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.stock_pools = context.options['data'].read()\n context.show_debug_info = False\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n \n context.options['hold_days'] = 5\n context.stock_count = 100\n context.trade_index = 0\n context.opt = T.PORTFOLIO_OPTIMIZERS(context.stock_pools, context.start_date, context.end_date, model_type='daily',benchmark='000905.HIX')","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n context.trade_index += 1 # 交易日历递增1\n today = data.current_dt.strftime(\"%Y-%m-%d\")\n print('current_date is:', today)\n context.stock_pool = context.stock_pools[context.stock_pools.date == today]\n if context.trade_index == 1: # 第一天建仓\n# try:\n context.opt.get_today_factor_data(context.stock_pool, today) # 当日数据初始化\n objective = context.opt.MaxScore()\n constraints = [context.opt.TotalWeightsConstraint(upper_limit=1), \n context.opt.Bounds(lower_limit=0, upper_limit=0.03),\n context.opt.ExcludeStyleConstraint(\"value\",lower_limit=-0.05,upper_limit=0.05,relative=False,priority=0),\n context.opt.VolatilityConstraint(upper_limit = 0.1,relative =False, priority = 1), \n ]\n weights_data = context.opt.optimize(objective, today, constraints, stock_count=context.stock_count, verbose=False, response=True, hard=False)\n def buy_1(df):\n target = df[\"instrument\"]\n weight = df[\"weight\"]\n sid = context.symbol(target)\n if data.can_trade(sid):\n context.order_target_percent(sid, weight)\n else:\n print(f\"{today} {target} 无法交易\")\n weights_data.apply(buy_1, axis=1)\n\n# except Exception as e:\n# print(today, \"当前日期建仓失败! except:\", e)\n# context.trade_index -= 1 # 交易日历索引保持不变,以便当日优化失败后次日接着优化\n\n if context.trade_index % context.options[\"hold_days\"] == 0 and context.trade_index != 1: # 每隔调仓日进行调仓\n positions_weight = {e.symbol: p.amount * p.last_sale_price / context.portfolio.portfolio_value for e, p in context.portfolio.positions.items()} # 持仓权重\n equities = [e.symbol for e, p in context.portfolio.positions.items()] # 持仓股票列表\n w0 = pd.Series(positions_weight, index=equities)\n w0 = pd.DataFrame({'pre_weight': w0.values, 'instrument': w0.index})\n context.stock_pool = pd.merge(context.stock_pool, w0, on=['instrument'], how='left').fillna(0)\n context.opt.get_today_factor_data(context.stock_pool, today)\n\n# try:\n objective = context.opt.MaxScore()\n constraints = [context.opt.TotalWeightsConstraint(upper_limit=1), \n context.opt.Bounds(lower_limit=0, upper_limit=0.03),\n context.opt.ExcludeStyleConstraint(\"value\",lower_limit=-0.05,upper_limit=0.05,relative=False,priority=0),\n context.opt.VolatilityConstraint(upper_limit = 0.1,relative =False, priority = 1),\n ]\n weights_data = context.opt.optimize(objective, today, constraints, stock_count=context.stock_count, verbose=False, response=True, hard=False)\n\n # 卖出逻辑\n need_hold_stocks = set(weights_data.instrument)\n for sx in equities:\n if sx not in need_hold_stocks: # 无法交易的持仓、优化股票之外的持仓 直接卖出\n order_target_percent(context.symbol(sx), 0)\n equities.remove(sx)\n positions_weight = {e:p for e, p in positions_weight.items() if e != sx}\n\n # 买入逻辑\n def buy_2(df):\n target = df[\"instrument\"]\n weight = df[\"weight\"]\n sid = context.symbol(target)\n if data.can_trade(sid):\n context.order_target_percent(sid, weight)\n else:\n print(f\"{today} {target} 无法交易\")\n weights_data.apply(buy_2, axis=1)\n \n# except Exception as e:\n# print(today, \"当前日期调仓失败! except:\", e)\n \n print('----------------------------------------------------------------------------------------date {} over----------------------------------------------------------------------------------------'.format(today))","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000905.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-10865"},{"name":"options_data","node_id":"-10865"},{"name":"history_ds","node_id":"-10865"},{"name":"benchmark_ds","node_id":"-10865"},{"name":"trading_calendar","node_id":"-10865"}],"output_ports":[{"name":"raw_perf","node_id":"-10865"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-1262","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1262"}],"output_ports":[{"name":"data","node_id":"-1262"},{"name":"left_data","node_id":"-1262"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-4567","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-4567"}],"output_ports":[{"name":"data","node_id":"-4567"},{"name":"left_data","node_id":"-4567"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-4577","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-4577"}],"output_ports":[{"name":"data","node_id":"-4577"},{"name":"left_data","node_id":"-4577"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-10245","module_id":"BigQuantSpace.strategy_turn_analysis.strategy_turn_analysis-v1","parameters":[],"input_ports":[{"name":"raw_perf","node_id":"-10245"}],"output_ports":[{"name":"data","node_id":"-10245"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='202,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='43,134,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='698,-35,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='533.295654296875,538.63037109375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='239,315,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='529,618,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1037,68,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='246,465,200,200'/><node_position Node='-86' Position='1038,427,200,200'/><node_position Node='-215' Position='352,128,200,200'/><node_position Node='-222' Position='360,200,200,200'/><node_position Node='-231' Position='1058,191.9260711669922,200,200'/><node_position Node='-238' Position='1059,266,200,200'/><node_position Node='-10865' Position='520,766,200,200'/><node_position Node='-1262' Position='534,696,200,200'/><node_position Node='-4567' Position='241,387,200,200'/><node_position Node='-4577' Position='1047,339,200,200'/><node_position Node='-10245' Position='609,911,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [2]:
    # 本代码由可视化策略环境自动生成 2023年4月29日 12:34
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m20_initialize_bigquant_run(context):
        # 加载预测数据
        context.stock_pools = context.options['data'].read()
        context.show_debug_info = False
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        
        context.options['hold_days'] = 5
        context.stock_count = 100
        context.trade_index = 0
        context.opt = T.PORTFOLIO_OPTIMIZERS(context.stock_pools, context.start_date, context.end_date, model_type='daily',benchmark='000905.HIX')
    # 回测引擎:每日数据处理函数,每天执行一次
    def m20_handle_data_bigquant_run(context, data):
        context.trade_index += 1  # 交易日历递增1
        today = data.current_dt.strftime("%Y-%m-%d")
        print('current_date is:', today)
        context.stock_pool = context.stock_pools[context.stock_pools.date == today]
        if context.trade_index == 1:  # 第一天建仓
    #         try:
            context.opt.get_today_factor_data(context.stock_pool, today) # 当日数据初始化
            objective = context.opt.MaxScore()
            constraints = [context.opt.TotalWeightsConstraint(upper_limit=1), 
                           context.opt.Bounds(lower_limit=0, upper_limit=0.03),
                           context.opt.ExcludeStyleConstraint("value",lower_limit=-0.05,upper_limit=0.05,relative=False,priority=0),
                           context.opt.VolatilityConstraint(upper_limit = 0.1,relative =False, priority  = 1), 
                          ]
            weights_data = context.opt.optimize(objective, today, constraints, stock_count=context.stock_count, verbose=False, response=True, hard=False)
            def buy_1(df):
                target = df["instrument"]
                weight = df["weight"]
                sid = context.symbol(target)
                if data.can_trade(sid):
                    context.order_target_percent(sid, weight)
                else:
                    print(f"{today} {target} 无法交易")
            weights_data.apply(buy_1, axis=1)
    
    #         except Exception as e:
    #         print(today, "当前日期建仓失败! except:", e)
    #         context.trade_index -= 1  # 交易日历索引保持不变,以便当日优化失败后次日接着优化
    
        if context.trade_index % context.options["hold_days"] == 0 and context.trade_index != 1:  # 每隔调仓日进行调仓
            positions_weight = {e.symbol: p.amount * p.last_sale_price / context.portfolio.portfolio_value for e, p in context.portfolio.positions.items()} # 持仓权重
            equities = [e.symbol for e, p in context.portfolio.positions.items()]  # 持仓股票列表
            w0 = pd.Series(positions_weight, index=equities)
            w0 = pd.DataFrame({'pre_weight': w0.values, 'instrument': w0.index})
            context.stock_pool = pd.merge(context.stock_pool, w0, on=['instrument'], how='left').fillna(0)
            context.opt.get_today_factor_data(context.stock_pool, today)
    
    #         try:
            objective = context.opt.MaxScore()
            constraints = [context.opt.TotalWeightsConstraint(upper_limit=1), 
                           context.opt.Bounds(lower_limit=0, upper_limit=0.03),
                           context.opt.ExcludeStyleConstraint("value",lower_limit=-0.05,upper_limit=0.05,relative=False,priority=0),
                           context.opt.VolatilityConstraint(upper_limit = 0.1,relative =False, priority  = 1),
                          ]
            weights_data = context.opt.optimize(objective, today, constraints, stock_count=context.stock_count, verbose=False, response=True, hard=False)
    
            # 卖出逻辑
            need_hold_stocks = set(weights_data.instrument)
            for sx in equities:
                if sx not in need_hold_stocks:  # 无法交易的持仓、优化股票之外的持仓 直接卖出
                    order_target_percent(context.symbol(sx), 0)
                    equities.remove(sx)
                    positions_weight = {e:p for e, p in positions_weight.items() if e != sx}
    
            # 买入逻辑
            def buy_2(df):
                target = df["instrument"]
                weight = df["weight"]
                sid = context.symbol(target)
                if data.can_trade(sid):
                    context.order_target_percent(sid, weight)
                else:
                    print(f"{today} {target} 无法交易")
            weights_data.apply(buy_2, axis=1)
                    
    #         except Exception as e:
    #             print(today, "当前日期调仓失败! except:", e)
                
            print('----------------------------------------------------------------------------------------date {} over----------------------------------------------------------------------------------------'.format(today))
    # 回测引擎:准备数据,只执行一次
    def m20_prepare_bigquant_run(context):
        pass
    
    
    m1 = M.instruments.v2(
        start_date='2016-01-01',
        end_date='2020-12-31',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -2) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000500.HIX',
        drop_na_label=True,
        cast_label_int=True
    )
    
    m3 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    return_5
    return_10
    return_20
    avg_amount_0/avg_amount_5
    avg_amount_5/avg_amount_20
    rank_avg_amount_0/rank_avg_amount_5
    rank_avg_amount_5/rank_avg_amount_10
    rank_return_0
    rank_return_5
    rank_return_10
    rank_return_0/rank_return_5
    rank_return_5/rank_return_10
    pe_ttm_0
    
    
    hf_value_diff_large_order
    hf_close_net_inflow_volume_rate
    hf_close_net_inflow_value_rate
    hf_volume_diff_large_order
    hf_close_netinflow_rate_med_order_act
    hf_close_sell_volume_med_order
    hf_close_volume_ask
    hf_close_netinflow_rate_small_order_act
    hf_close_sell_volume_small_order
    hf_close_buy_volume_small_order_act
    hf_close_buy_volume_med_order_act
    hf_close_sell_volume_large_order"""
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m7 = M.join.v3(
        data1=m2.data,
        data2=m16.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m5 = M.chinaa_stock_filter.v1(
        input_data=m7.data,
        index_constituent_cond=['中证500'],
        board_cond=['上证主板', '深证主板', '创业板'],
        industry_cond=['全部'],
        st_cond=['正常'],
        delist_cond=['非退市'],
        output_left_data=False
    )
    
    m13 = M.dropnan.v1(
        input_data=m5.data
    )
    
    m6 = M.stock_ranker_train.v6(
        training_ds=m13.data,
        features=m3.data,
        learning_algorithm='排序',
        number_of_leaves=40,
        minimum_docs_per_leaf=1000,
        number_of_trees=20,
        learning_rate=0.2,
        max_bins=1023,
        feature_fraction=1,
        data_row_fraction=1,
        plot_charts=True,
        ndcg_discount_base=1,
        m_lazy_run=False
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2021-06-07'),
        end_date=T.live_run_param('trading_date', '2022-11-28'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m10 = M.chinaa_stock_filter.v1(
        input_data=m18.data,
        index_constituent_cond=['中证500'],
        board_cond=['上证主板', '深证主板', '创业板'],
        industry_cond=['全部'],
        st_cond=['正常'],
        delist_cond=['非退市'],
        output_left_data=False
    )
    
    m14 = M.dropnan.v1(
        input_data=m10.data
    )
    
    m8 = M.stock_ranker_predict.v5(
        model=m6.model,
        data=m14.data,
        m_lazy_run=False
    )
    
    m4 = M.chinaa_stock_filter.v1(
        input_data=m8.predictions,
        index_constituent_cond=['中证500'],
        board_cond=['全部'],
        industry_cond=['全部'],
        st_cond=['正常'],
        delist_cond=['非退市'],
        output_left_data=False
    )
    
    m20 = M.trade.v4(
        instruments=m9.data,
        options_data=m4.data,
        start_date='',
        end_date='',
        initialize=m20_initialize_bigquant_run,
        handle_data=m20_handle_data_bigquant_run,
        prepare=m20_prepare_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000905.HIX'
    )
    
    m11 = M.strategy_turn_analysis.v1(
        raw_perf=m20.raw_perf
    )
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-93308c0593ce47e3a898a555a42d660a"}/bigcharts-data-end
    current_date is: 2021-06-07
    amount of unique_stocks : 492, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    current_date is: 2021-06-08
    current_date is: 2021-06-09
    current_date is: 2021-06-10
    current_date is: 2021-06-11
    amount of unique_stocks : 493, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-06-11 over----------------------------------------------------------------------------------------
    current_date is: 2021-06-15
    current_date is: 2021-06-16
    current_date is: 2021-06-17
    current_date is: 2021-06-18
    current_date is: 2021-06-21
    amount of unique_stocks : 494, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-06-21 over----------------------------------------------------------------------------------------
    current_date is: 2021-06-22
    current_date is: 2021-06-23
    current_date is: 2021-06-24
    current_date is: 2021-06-25
    current_date is: 2021-06-28
    amount of unique_stocks : 494, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-06-28 over----------------------------------------------------------------------------------------
    current_date is: 2021-06-29
    current_date is: 2021-06-30
    current_date is: 2021-07-01
    current_date is: 2021-07-02
    current_date is: 2021-07-05
    amount of unique_stocks : 493, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-07-05 over----------------------------------------------------------------------------------------
    current_date is: 2021-07-06
    current_date is: 2021-07-07
    current_date is: 2021-07-08
    current_date is: 2021-07-09
    current_date is: 2021-07-12
    amount of unique_stocks : 493, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-07-12 over----------------------------------------------------------------------------------------
    current_date is: 2021-07-13
    current_date is: 2021-07-14
    current_date is: 2021-07-15
    current_date is: 2021-07-16
    current_date is: 2021-07-19
    amount of unique_stocks : 493, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-07-19 over----------------------------------------------------------------------------------------
    current_date is: 2021-07-20
    current_date is: 2021-07-21
    current_date is: 2021-07-22
    current_date is: 2021-07-23
    current_date is: 2021-07-26
    amount of unique_stocks : 494, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-07-26 over----------------------------------------------------------------------------------------
    current_date is: 2021-07-27
    current_date is: 2021-07-28
    current_date is: 2021-07-29
    current_date is: 2021-07-30
    current_date is: 2021-08-02
    amount of unique_stocks : 494, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-08-02 over----------------------------------------------------------------------------------------
    current_date is: 2021-08-03
    current_date is: 2021-08-04
    current_date is: 2021-08-05
    current_date is: 2021-08-06
    current_date is: 2021-08-09
    amount of unique_stocks : 493, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-08-09 over----------------------------------------------------------------------------------------
    current_date is: 2021-08-10
    current_date is: 2021-08-11
    current_date is: 2021-08-12
    current_date is: 2021-08-13
    current_date is: 2021-08-16
    amount of unique_stocks : 492, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-08-16 over----------------------------------------------------------------------------------------
    current_date is: 2021-08-17
    current_date is: 2021-08-18
    current_date is: 2021-08-19
    current_date is: 2021-08-20
    current_date is: 2021-08-23
    amount of unique_stocks : 493, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-08-23 over----------------------------------------------------------------------------------------
    current_date is: 2021-08-24
    current_date is: 2021-08-25
    current_date is: 2021-08-26
    current_date is: 2021-08-27
    current_date is: 2021-08-30
    amount of unique_stocks : 492, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-08-30 over----------------------------------------------------------------------------------------
    current_date is: 2021-08-31
    current_date is: 2021-09-01
    current_date is: 2021-09-02
    current_date is: 2021-09-03
    current_date is: 2021-09-06
    amount of unique_stocks : 491, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-09-06 over----------------------------------------------------------------------------------------
    current_date is: 2021-09-07
    current_date is: 2021-09-08
    current_date is: 2021-09-09
    current_date is: 2021-09-10
    current_date is: 2021-09-13
    amount of unique_stocks : 493, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-09-13 over----------------------------------------------------------------------------------------
    current_date is: 2021-09-14
    current_date is: 2021-09-15
    current_date is: 2021-09-16
    current_date is: 2021-09-17
    current_date is: 2021-09-22
    amount of unique_stocks : 492, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-09-22 over----------------------------------------------------------------------------------------
    current_date is: 2021-09-23
    current_date is: 2021-09-24
    current_date is: 2021-09-27
    current_date is: 2021-09-28
    current_date is: 2021-09-29
    amount of unique_stocks : 493, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-09-29 over----------------------------------------------------------------------------------------
    current_date is: 2021-09-30
    current_date is: 2021-10-08
    current_date is: 2021-10-11
    current_date is: 2021-10-12
    current_date is: 2021-10-13
    amount of unique_stocks : 492, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-10-13 over----------------------------------------------------------------------------------------
    current_date is: 2021-10-14
    current_date is: 2021-10-15
    current_date is: 2021-10-18
    current_date is: 2021-10-19
    current_date is: 2021-10-20
    amount of unique_stocks : 491, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-10-20 over----------------------------------------------------------------------------------------
    current_date is: 2021-10-21
    current_date is: 2021-10-22
    current_date is: 2021-10-25
    current_date is: 2021-10-26
    current_date is: 2021-10-27
    amount of unique_stocks : 493, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-10-27 over----------------------------------------------------------------------------------------
    current_date is: 2021-10-28
    current_date is: 2021-10-29
    current_date is: 2021-11-01
    current_date is: 2021-11-02
    current_date is: 2021-11-03
    amount of unique_stocks : 494, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-11-03 over----------------------------------------------------------------------------------------
    current_date is: 2021-11-04
    current_date is: 2021-11-05
    current_date is: 2021-11-08
    current_date is: 2021-11-09
    current_date is: 2021-11-10
    amount of unique_stocks : 494, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-11-10 over----------------------------------------------------------------------------------------
    current_date is: 2021-11-11
    current_date is: 2021-11-12
    current_date is: 2021-11-15
    current_date is: 2021-11-16
    current_date is: 2021-11-17
    amount of unique_stocks : 494, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-11-17 over----------------------------------------------------------------------------------------
    current_date is: 2021-11-18
    current_date is: 2021-11-19
    current_date is: 2021-11-22
    current_date is: 2021-11-23
    current_date is: 2021-11-24
    amount of unique_stocks : 494, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-11-24 over----------------------------------------------------------------------------------------
    current_date is: 2021-11-25
    current_date is: 2021-11-26
    current_date is: 2021-11-29
    current_date is: 2021-11-30
    current_date is: 2021-12-01
    amount of unique_stocks : 493, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-12-01 over----------------------------------------------------------------------------------------
    current_date is: 2021-12-02
    current_date is: 2021-12-03
    current_date is: 2021-12-06
    current_date is: 2021-12-07
    current_date is: 2021-12-08
    amount of unique_stocks : 493, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-12-08 over----------------------------------------------------------------------------------------
    current_date is: 2021-12-09
    current_date is: 2021-12-10
    current_date is: 2021-12-13
    current_date is: 2021-12-14
    current_date is: 2021-12-15
    amount of unique_stocks : 486, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-12-15 over----------------------------------------------------------------------------------------
    current_date is: 2021-12-16
    current_date is: 2021-12-17
    current_date is: 2021-12-20
    current_date is: 2021-12-21
    current_date is: 2021-12-22
    amount of unique_stocks : 485, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-12-22 over----------------------------------------------------------------------------------------
    current_date is: 2021-12-23
    current_date is: 2021-12-24
    current_date is: 2021-12-27
    current_date is: 2021-12-28
    current_date is: 2021-12-29
    amount of unique_stocks : 486, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2021-12-29 over----------------------------------------------------------------------------------------
    current_date is: 2021-12-30
    current_date is: 2021-12-31
    current_date is: 2022-01-04
    current_date is: 2022-01-05
    current_date is: 2022-01-06
    amount of unique_stocks : 486, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-01-06 over----------------------------------------------------------------------------------------
    current_date is: 2022-01-07
    current_date is: 2022-01-10
    current_date is: 2022-01-11
    current_date is: 2022-01-12
    current_date is: 2022-01-13
    amount of unique_stocks : 487, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-01-13 over----------------------------------------------------------------------------------------
    current_date is: 2022-01-14
    current_date is: 2022-01-17
    current_date is: 2022-01-18
    current_date is: 2022-01-19
    current_date is: 2022-01-20
    amount of unique_stocks : 485, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-01-20 over----------------------------------------------------------------------------------------
    current_date is: 2022-01-21
    current_date is: 2022-01-24
    current_date is: 2022-01-25
    current_date is: 2022-01-26
    current_date is: 2022-01-27
    amount of unique_stocks : 485, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-01-27 over----------------------------------------------------------------------------------------
    current_date is: 2022-01-28
    current_date is: 2022-02-07
    current_date is: 2022-02-08
    current_date is: 2022-02-09
    current_date is: 2022-02-10
    amount of unique_stocks : 487, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-02-10 over----------------------------------------------------------------------------------------
    current_date is: 2022-02-11
    current_date is: 2022-02-14
    current_date is: 2022-02-15
    current_date is: 2022-02-16
    current_date is: 2022-02-17
    amount of unique_stocks : 486, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-02-17 over----------------------------------------------------------------------------------------
    current_date is: 2022-02-18
    current_date is: 2022-02-21
    current_date is: 2022-02-22
    current_date is: 2022-02-23
    current_date is: 2022-02-24
    amount of unique_stocks : 486, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-02-24 over----------------------------------------------------------------------------------------
    current_date is: 2022-02-25
    current_date is: 2022-02-28
    current_date is: 2022-03-01
    current_date is: 2022-03-02
    current_date is: 2022-03-03
    amount of unique_stocks : 486, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-03-03 over----------------------------------------------------------------------------------------
    current_date is: 2022-03-04
    current_date is: 2022-03-07
    current_date is: 2022-03-08
    current_date is: 2022-03-09
    current_date is: 2022-03-10
    amount of unique_stocks : 485, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-03-10 over----------------------------------------------------------------------------------------
    current_date is: 2022-03-11
    current_date is: 2022-03-14
    current_date is: 2022-03-15
    current_date is: 2022-03-16
    current_date is: 2022-03-17
    amount of unique_stocks : 487, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-03-17 over----------------------------------------------------------------------------------------
    current_date is: 2022-03-18
    current_date is: 2022-03-21
    current_date is: 2022-03-22
    current_date is: 2022-03-23
    current_date is: 2022-03-24
    amount of unique_stocks : 487, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-03-24 over----------------------------------------------------------------------------------------
    current_date is: 2022-03-25
    current_date is: 2022-03-28
    current_date is: 2022-03-29
    current_date is: 2022-03-30
    current_date is: 2022-03-31
    amount of unique_stocks : 487, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-03-31 over----------------------------------------------------------------------------------------
    current_date is: 2022-04-01
    current_date is: 2022-04-06
    current_date is: 2022-04-07
    current_date is: 2022-04-08
    current_date is: 2022-04-11
    amount of unique_stocks : 487, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-04-11 over----------------------------------------------------------------------------------------
    current_date is: 2022-04-12
    current_date is: 2022-04-13
    current_date is: 2022-04-14
    current_date is: 2022-04-15
    current_date is: 2022-04-18
    amount of unique_stocks : 486, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-04-18 over----------------------------------------------------------------------------------------
    current_date is: 2022-04-19
    current_date is: 2022-04-20
    current_date is: 2022-04-21
    current_date is: 2022-04-22
    current_date is: 2022-04-25
    amount of unique_stocks : 486, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-04-25 over----------------------------------------------------------------------------------------
    current_date is: 2022-04-26
    current_date is: 2022-04-27
    current_date is: 2022-04-28
    current_date is: 2022-04-29
    current_date is: 2022-05-05
    amount of unique_stocks : 487, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-05-05 over----------------------------------------------------------------------------------------
    current_date is: 2022-05-06
    current_date is: 2022-05-09
    current_date is: 2022-05-10
    current_date is: 2022-05-11
    current_date is: 2022-05-12
    amount of unique_stocks : 487, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-05-12 over----------------------------------------------------------------------------------------
    current_date is: 2022-05-13
    current_date is: 2022-05-16
    current_date is: 2022-05-17
    current_date is: 2022-05-18
    current_date is: 2022-05-19
    amount of unique_stocks : 487, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-05-19 over----------------------------------------------------------------------------------------
    current_date is: 2022-05-20
    current_date is: 2022-05-23
    current_date is: 2022-05-24
    current_date is: 2022-05-25
    current_date is: 2022-05-26
    amount of unique_stocks : 486, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-05-26 over----------------------------------------------------------------------------------------
    current_date is: 2022-05-27
    current_date is: 2022-05-30
    current_date is: 2022-05-31
    current_date is: 2022-06-01
    current_date is: 2022-06-02
    amount of unique_stocks : 484, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-06-02 over----------------------------------------------------------------------------------------
    current_date is: 2022-06-06
    current_date is: 2022-06-07
    current_date is: 2022-06-08
    current_date is: 2022-06-09
    current_date is: 2022-06-10
    amount of unique_stocks : 484, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-06-10 over----------------------------------------------------------------------------------------
    current_date is: 2022-06-13
    current_date is: 2022-06-14
    current_date is: 2022-06-15
    current_date is: 2022-06-16
    current_date is: 2022-06-17
    amount of unique_stocks : 479, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-06-17 over----------------------------------------------------------------------------------------
    current_date is: 2022-06-20
    current_date is: 2022-06-21
    current_date is: 2022-06-22
    current_date is: 2022-06-23
    current_date is: 2022-06-24
    amount of unique_stocks : 480, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-06-24 over----------------------------------------------------------------------------------------
    current_date is: 2022-06-27
    current_date is: 2022-06-28
    current_date is: 2022-06-29
    current_date is: 2022-06-30
    current_date is: 2022-07-01
    amount of unique_stocks : 480, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-07-01 over----------------------------------------------------------------------------------------
    current_date is: 2022-07-04
    current_date is: 2022-07-05
    current_date is: 2022-07-06
    current_date is: 2022-07-07
    current_date is: 2022-07-08
    amount of unique_stocks : 480, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-07-08 over----------------------------------------------------------------------------------------
    current_date is: 2022-07-11
    current_date is: 2022-07-12
    current_date is: 2022-07-13
    current_date is: 2022-07-14
    current_date is: 2022-07-15
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-07-15 over----------------------------------------------------------------------------------------
    current_date is: 2022-07-18
    current_date is: 2022-07-19
    current_date is: 2022-07-20
    current_date is: 2022-07-21
    current_date is: 2022-07-22
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-07-22 over----------------------------------------------------------------------------------------
    current_date is: 2022-07-25
    current_date is: 2022-07-26
    current_date is: 2022-07-27
    current_date is: 2022-07-28
    current_date is: 2022-07-29
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-07-29 over----------------------------------------------------------------------------------------
    current_date is: 2022-08-01
    current_date is: 2022-08-02
    current_date is: 2022-08-03
    current_date is: 2022-08-04
    current_date is: 2022-08-05
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-08-05 over----------------------------------------------------------------------------------------
    current_date is: 2022-08-08
    current_date is: 2022-08-09
    current_date is: 2022-08-10
    current_date is: 2022-08-11
    current_date is: 2022-08-12
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-08-12 over----------------------------------------------------------------------------------------
    current_date is: 2022-08-15
    current_date is: 2022-08-16
    current_date is: 2022-08-17
    current_date is: 2022-08-18
    current_date is: 2022-08-19
    amount of unique_stocks : 480, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-08-19 over----------------------------------------------------------------------------------------
    current_date is: 2022-08-22
    current_date is: 2022-08-23
    current_date is: 2022-08-24
    current_date is: 2022-08-25
    current_date is: 2022-08-26
    amount of unique_stocks : 480, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-08-26 over----------------------------------------------------------------------------------------
    current_date is: 2022-08-29
    current_date is: 2022-08-30
    current_date is: 2022-08-31
    current_date is: 2022-09-01
    current_date is: 2022-09-02
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-09-02 over----------------------------------------------------------------------------------------
    current_date is: 2022-09-05
    current_date is: 2022-09-06
    current_date is: 2022-09-07
    current_date is: 2022-09-08
    current_date is: 2022-09-09
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-09-09 over----------------------------------------------------------------------------------------
    current_date is: 2022-09-13
    current_date is: 2022-09-14
    current_date is: 2022-09-15
    current_date is: 2022-09-16
    current_date is: 2022-09-19
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-09-19 over----------------------------------------------------------------------------------------
    current_date is: 2022-09-20
    current_date is: 2022-09-21
    current_date is: 2022-09-22
    current_date is: 2022-09-23
    current_date is: 2022-09-26
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-09-26 over----------------------------------------------------------------------------------------
    current_date is: 2022-09-27
    current_date is: 2022-09-28
    current_date is: 2022-09-29
    current_date is: 2022-09-30
    current_date is: 2022-10-10
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-10-10 over----------------------------------------------------------------------------------------
    current_date is: 2022-10-11
    current_date is: 2022-10-12
    current_date is: 2022-10-13
    current_date is: 2022-10-14
    current_date is: 2022-10-17
    amount of unique_stocks : 480, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-10-17 over----------------------------------------------------------------------------------------
    current_date is: 2022-10-18
    current_date is: 2022-10-19
    current_date is: 2022-10-20
    current_date is: 2022-10-21
    current_date is: 2022-10-24
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-10-24 over----------------------------------------------------------------------------------------
    current_date is: 2022-10-25
    current_date is: 2022-10-26
    current_date is: 2022-10-27
    current_date is: 2022-10-28
    current_date is: 2022-10-31
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-10-31 over----------------------------------------------------------------------------------------
    current_date is: 2022-11-01
    current_date is: 2022-11-02
    current_date is: 2022-11-03
    current_date is: 2022-11-04
    current_date is: 2022-11-07
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-11-07 over----------------------------------------------------------------------------------------
    current_date is: 2022-11-08
    current_date is: 2022-11-09
    current_date is: 2022-11-10
    current_date is: 2022-11-11
    current_date is: 2022-11-14
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-11-14 over----------------------------------------------------------------------------------------
    current_date is: 2022-11-15
    current_date is: 2022-11-16
    current_date is: 2022-11-17
    current_date is: 2022-11-18
    current_date is: 2022-11-21
    amount of unique_stocks : 480, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-11-21 over----------------------------------------------------------------------------------------
    current_date is: 2022-11-22
    current_date is: 2022-11-23
    current_date is: 2022-11-24
    current_date is: 2022-11-25
    current_date is: 2022-11-28
    amount of unique_stocks : 481, weights objective should be considered
    Using Soft Constraints, and the Optimization result is optimal before the relaxation
    ----------------------------------------------------------------------------------------date 2022-11-28 over----------------------------------------------------------------------------------------
    
    • 收益率-5.78%
    • 年化收益率-4.08%
    • 基准收益率-9.53%
    • 阿尔法0.04
    • 贝塔1.03
    • 夏普比率-0.2
    • 胜率0.5
    • 盈亏比0.98
    • 收益波动率22.56%
    • 信息比率0.02
    • 最大回撤31.08%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-03846591216f4d1784aa53d6c94d0e3c"}/bigcharts-data-end