{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-4567:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-1262:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-10865:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-4577:input_data","from_node_id":"-238:data"},{"to_node_id":"-10245:raw_perf","from_node_id":"-10865:raw_perf"},{"to_node_id":"-10865:options_data","from_node_id":"-1262:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"-4567:data"},{"to_node_id":"-86:input_data","from_node_id":"-4577:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000500.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n\n\nhf_value_diff_large_order\nhf_close_net_inflow_volume_rate\nhf_close_net_inflow_value_rate\nhf_volume_diff_large_order\nhf_close_netinflow_rate_med_order_act\nhf_close_sell_volume_med_order\nhf_close_volume_ask\nhf_close_netinflow_rate_small_order_act\nhf_close_sell_volume_small_order\nhf_close_buy_volume_small_order_act\nhf_close_buy_volume_med_order_act\nhf_close_sell_volume_large_order","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"40","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.2","type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-06-07","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-11-28","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-10865","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.stock_pools = context.options['data'].read()\n context.show_debug_info = False\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n \n context.options['hold_days'] = 5\n context.stock_count = 100\n context.trade_index = 0\n context.opt = T.PORTFOLIO_OPTIMIZERS(context.stock_pools, context.start_date, context.end_date, model_type='daily',benchmark='000905.HIX')","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n context.trade_index += 1 # 交易日历递增1\n today = data.current_dt.strftime(\"%Y-%m-%d\")\n print('current_date is:', today)\n context.stock_pool = context.stock_pools[context.stock_pools.date == today]\n if context.trade_index == 1: # 第一天建仓\n# try:\n context.opt.get_today_factor_data(context.stock_pool, today) # 当日数据初始化\n objective = context.opt.MaxScore()\n constraints = [context.opt.TotalWeightsConstraint(upper_limit=1), \n context.opt.Bounds(lower_limit=0, upper_limit=0.03),\n context.opt.ExcludeStyleConstraint(\"value\",lower_limit=-0.05,upper_limit=0.05,relative=False,priority=0),\n context.opt.VolatilityConstraint(upper_limit = 0.1,relative =False, priority = 1), \n ]\n weights_data = context.opt.optimize(objective, today, constraints, stock_count=context.stock_count, verbose=False, response=True, hard=False)\n def buy_1(df):\n target = df[\"instrument\"]\n weight = df[\"weight\"]\n sid = context.symbol(target)\n if data.can_trade(sid):\n context.order_target_percent(sid, weight)\n else:\n print(f\"{today} {target} 无法交易\")\n weights_data.apply(buy_1, axis=1)\n\n# except Exception as e:\n# print(today, \"当前日期建仓失败! except:\", e)\n# context.trade_index -= 1 # 交易日历索引保持不变,以便当日优化失败后次日接着优化\n\n if context.trade_index % context.options[\"hold_days\"] == 0 and context.trade_index != 1: # 每隔调仓日进行调仓\n positions_weight = {e.symbol: p.amount * p.last_sale_price / context.portfolio.portfolio_value for e, p in context.portfolio.positions.items()} # 持仓权重\n equities = [e.symbol for e, p in context.portfolio.positions.items()] # 持仓股票列表\n w0 = pd.Series(positions_weight, index=equities)\n w0 = pd.DataFrame({'pre_weight': w0.values, 'instrument': w0.index})\n context.stock_pool = pd.merge(context.stock_pool, w0, on=['instrument'], how='left').fillna(0)\n context.opt.get_today_factor_data(context.stock_pool, today)\n\n# try:\n objective = context.opt.MaxScore()\n constraints = [context.opt.TotalWeightsConstraint(upper_limit=1), \n context.opt.Bounds(lower_limit=0, upper_limit=0.03),\n context.opt.ExcludeStyleConstraint(\"value\",lower_limit=-0.05,upper_limit=0.05,relative=False,priority=0),\n context.opt.VolatilityConstraint(upper_limit = 0.1,relative =False, priority = 1),\n ]\n weights_data = context.opt.optimize(objective, today, constraints, stock_count=context.stock_count, verbose=False, response=True, hard=False)\n\n # 卖出逻辑\n need_hold_stocks = set(weights_data.instrument)\n for sx in equities:\n if sx not in need_hold_stocks: # 无法交易的持仓、优化股票之外的持仓 直接卖出\n order_target_percent(context.symbol(sx), 0)\n equities.remove(sx)\n positions_weight = {e:p for e, p in positions_weight.items() if e != sx}\n\n # 买入逻辑\n def buy_2(df):\n target = df[\"instrument\"]\n weight = df[\"weight\"]\n sid = context.symbol(target)\n if data.can_trade(sid):\n context.order_target_percent(sid, weight)\n else:\n print(f\"{today} {target} 无法交易\")\n weights_data.apply(buy_2, axis=1)\n \n# except Exception as e:\n# print(today, \"当前日期调仓失败! except:\", e)\n \n print('----------------------------------------------------------------------------------------date {} over----------------------------------------------------------------------------------------'.format(today))","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000905.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-10865"},{"name":"options_data","node_id":"-10865"},{"name":"history_ds","node_id":"-10865"},{"name":"benchmark_ds","node_id":"-10865"},{"name":"trading_calendar","node_id":"-10865"}],"output_ports":[{"name":"raw_perf","node_id":"-10865"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-1262","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1262"}],"output_ports":[{"name":"data","node_id":"-1262"},{"name":"left_data","node_id":"-1262"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-4567","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-4567"}],"output_ports":[{"name":"data","node_id":"-4567"},{"name":"left_data","node_id":"-4567"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-4577","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-4577"}],"output_ports":[{"name":"data","node_id":"-4577"},{"name":"left_data","node_id":"-4577"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-10245","module_id":"BigQuantSpace.strategy_turn_analysis.strategy_turn_analysis-v1","parameters":[],"input_ports":[{"name":"raw_perf","node_id":"-10245"}],"output_ports":[{"name":"data","node_id":"-10245"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='202,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='43,134,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='698,-35,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='533.295654296875,538.63037109375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='239,315,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='529,618,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1037,68,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='246,465,200,200'/><node_position Node='-86' Position='1038,427,200,200'/><node_position Node='-215' Position='352,128,200,200'/><node_position Node='-222' Position='360,200,200,200'/><node_position Node='-231' Position='1058,191.9260711669922,200,200'/><node_position Node='-238' Position='1059,266,200,200'/><node_position Node='-10865' Position='520,766,200,200'/><node_position Node='-1262' Position='534,696,200,200'/><node_position Node='-4567' Position='241,387,200,200'/><node_position Node='-4577' Position='1047,339,200,200'/><node_position Node='-10245' Position='609,911,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-04-29 11:52:52.500179] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-04-29 11:52:52.516206] INFO: moduleinvoker: 命中缓存
[2023-04-29 11:52:52.518854] INFO: moduleinvoker: instruments.v2 运行完成[0.018698s].
[2023-04-29 11:52:52.531817] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2023-04-29 11:52:57.404803] INFO: 自动标注(股票): 加载历史数据: 4032588 行
[2023-04-29 11:52:57.407203] INFO: 自动标注(股票): 开始标注 ..
[2023-04-29 11:53:03.315342] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[10.783518s].
[2023-04-29 11:53:03.322831] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-04-29 11:53:03.332700] INFO: moduleinvoker: 命中缓存
[2023-04-29 11:53:03.335335] INFO: moduleinvoker: input_features.v1 运行完成[0.01251s].
[2023-04-29 11:53:03.357942] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-04-29 11:53:05.434204] INFO: 基础特征抽取: 年份 2015, 特征行数=148559
[2023-04-29 11:53:10.851918] INFO: 基础特征抽取: 年份 2016, 特征行数=638310
[2023-04-29 11:53:17.191035] INFO: 基础特征抽取: 年份 2017, 特征行数=743238
[2023-04-29 11:53:24.461357] INFO: 基础特征抽取: 年份 2018, 特征行数=814951
[2023-04-29 11:53:32.218871] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2023-04-29 11:53:40.752287] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2023-04-29 11:53:40.834414] INFO: 基础特征抽取: 总行数: 4175886
[2023-04-29 11:53:40.849731] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[37.491817s].
[2023-04-29 11:53:40.862126] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-04-29 11:53:51.861286] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.016s
[2023-04-29 11:53:51.877005] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.013s
[2023-04-29 11:53:51.885796] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.007s
[2023-04-29 11:53:51.893782] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.006s
[2023-04-29 11:53:51.903035] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.007s
[2023-04-29 11:53:51.912451] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.007s
[2023-04-29 11:53:54.079774] INFO: derived_feature_extractor: /y_2015, 148559
[2023-04-29 11:53:55.523867] INFO: derived_feature_extractor: /y_2016, 638310
[2023-04-29 11:53:57.919680] INFO: derived_feature_extractor: /y_2017, 743238
[2023-04-29 11:54:00.537651] INFO: derived_feature_extractor: /y_2018, 814951
[2023-04-29 11:54:03.461997] INFO: derived_feature_extractor: /y_2019, 884867
[2023-04-29 11:54:06.918501] INFO: derived_feature_extractor: /y_2020, 945961
[2023-04-29 11:54:08.462790] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[27.60065s].
[2023-04-29 11:54:08.474645] INFO: moduleinvoker: join.v3 开始运行..
[2023-04-29 11:54:27.294753] INFO: join: /y_2015, 行数=0/148559, 耗时=2.00445s
[2023-04-29 11:54:31.037472] INFO: join: /y_2016, 行数=634265/638310, 耗时=3.740522s
[2023-04-29 11:54:35.515753] INFO: join: /y_2017, 行数=738271/743238, 耗时=4.471875s
[2023-04-29 11:54:40.158624] INFO: join: /y_2018, 行数=811500/814951, 耗时=4.636026s
[2023-04-29 11:54:45.042515] INFO: join: /y_2019, 行数=881324/884867, 耗时=4.876461s
[2023-04-29 11:54:49.998100] INFO: join: /y_2020, 行数=931755/945961, 耗时=4.947474s
[2023-04-29 11:54:50.127038] INFO: join: 最终行数: 3997115
[2023-04-29 11:54:50.185021] INFO: moduleinvoker: join.v3 运行完成[41.710377s].
[2023-04-29 11:54:50.202534] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2023-04-29 11:54:56.722981] INFO: A股股票过滤: 过滤 /y_2016, 113666/0/634265
[2023-04-29 11:55:02.012940] INFO: A股股票过滤: 过滤 /y_2017, 115213/0/738271
[2023-04-29 11:55:07.793768] INFO: A股股票过滤: 过滤 /y_2018, 114877/0/811500
[2023-04-29 11:55:14.088681] INFO: A股股票过滤: 过滤 /y_2019, 121220/0/881324
[2023-04-29 11:55:20.713332] INFO: A股股票过滤: 过滤 /y_2020, 119670/0/931755
[2023-04-29 11:55:20.724372] INFO: A股股票过滤: 过滤完成, 584646 + 0
[2023-04-29 11:55:20.745766] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[30.543214s].
[2023-04-29 11:55:20.760750] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-04-29 11:55:21.388974] INFO: dropnan: /y_2016, 56655/113666
[2023-04-29 11:55:21.736107] INFO: dropnan: /y_2017, 60342/115213
[2023-04-29 11:55:22.065978] INFO: dropnan: /y_2018, 59849/114877
[2023-04-29 11:55:22.389750] INFO: dropnan: /y_2019, 61321/121220
[2023-04-29 11:55:22.823564] INFO: dropnan: /y_2020, 60372/119670
[2023-04-29 11:55:22.862888] INFO: dropnan: 行数: 298539/584646
[2023-04-29 11:55:22.868376] INFO: moduleinvoker: dropnan.v1 运行完成[2.10762s].
[2023-04-29 11:55:22.886809] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2023-04-29 11:55:23.741047] INFO: StockRanker: 特征预处理 ..
[2023-04-29 11:55:24.575098] INFO: StockRanker: prepare data: training ..
[2023-04-29 11:55:25.567715] INFO: StockRanker: sort ..
[2023-04-29 11:55:30.670937] INFO: StockRanker训练: aaab894a 准备训练: 298539 行数
[2023-04-29 11:55:30.672710] INFO: StockRanker训练: AI模型训练,将在298539*25=746.35万数据上对模型训练进行20轮迭代训练。预计将需要3~6分钟。请耐心等待。
[2023-04-29 11:55:30.986211] INFO: StockRanker训练: 正在训练 ..
[2023-04-29 11:55:31.037522] INFO: StockRanker训练: 任务状态: Pending
[2023-04-29 11:55:41.082984] INFO: StockRanker训练: 任务状态: Running
[2023-04-29 11:56:41.339200] INFO: StockRanker训练: 00:01:02.7517952, finished iteration 1
[2023-04-29 11:56:41.341530] INFO: StockRanker训练: 00:01:03.0454400, finished iteration 2
[2023-04-29 11:56:41.343818] INFO: StockRanker训练: 00:01:03.3559600, finished iteration 3
[2023-04-29 11:56:41.345945] INFO: StockRanker训练: 00:01:03.6794417, finished iteration 4
[2023-04-29 11:56:41.347870] INFO: StockRanker训练: 00:01:04.0010198, finished iteration 5
[2023-04-29 11:56:41.349398] INFO: StockRanker训练: 00:01:04.2766346, finished iteration 6
[2023-04-29 11:56:41.351057] INFO: StockRanker训练: 00:01:04.6037617, finished iteration 7
[2023-04-29 11:56:41.352866] INFO: StockRanker训练: 00:01:04.9142953, finished iteration 8
[2023-04-29 11:56:41.354420] INFO: StockRanker训练: 00:01:05.2124136, finished iteration 9
[2023-04-29 11:56:41.355995] INFO: StockRanker训练: 00:01:05.5816520, finished iteration 10
[2023-04-29 11:56:41.357774] INFO: StockRanker训练: 00:01:05.9144599, finished iteration 11
[2023-04-29 11:56:41.359281] INFO: StockRanker训练: 00:01:06.2734558, finished iteration 12
[2023-04-29 11:56:41.360797] INFO: StockRanker训练: 00:01:06.6276366, finished iteration 13
[2023-04-29 11:56:51.415974] INFO: StockRanker训练: 00:01:06.9835931, finished iteration 14
[2023-04-29 11:56:51.417855] INFO: StockRanker训练: 00:01:07.2452847, finished iteration 15
[2023-04-29 11:56:51.419501] INFO: StockRanker训练: 00:01:07.5649308, finished iteration 16
[2023-04-29 11:56:51.421238] INFO: StockRanker训练: 00:01:07.8866882, finished iteration 17
[2023-04-29 11:56:51.423121] INFO: StockRanker训练: 00:01:08.2017857, finished iteration 18
[2023-04-29 11:56:51.424980] INFO: StockRanker训练: 00:01:08.5148644, finished iteration 19
[2023-04-29 11:56:51.426725] INFO: StockRanker训练: 00:01:08.8527135, finished iteration 20
[2023-04-29 11:56:51.428572] INFO: StockRanker训练: 任务状态: Succeeded
[2023-04-29 11:56:51.711907] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[88.825092s].
[2023-04-29 11:56:51.719462] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-04-29 11:56:51.825403] INFO: moduleinvoker: instruments.v2 运行完成[0.105939s].
[2023-04-29 11:56:51.863150] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-04-29 11:56:59.126639] INFO: 基础特征抽取: 年份 2021, 特征行数=888541
[2023-04-29 11:57:07.360648] INFO: 基础特征抽取: 年份 2022, 特征行数=1029063
[2023-04-29 11:57:07.440275] INFO: 基础特征抽取: 总行数: 1917604
[2023-04-29 11:57:07.449869] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[15.586747s].
[2023-04-29 11:57:07.462929] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-04-29 11:57:12.172824] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.006s
[2023-04-29 11:57:12.179903] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.005s
[2023-04-29 11:57:12.184781] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.003s
[2023-04-29 11:57:12.189458] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.003s
[2023-04-29 11:57:12.194046] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.003s
[2023-04-29 11:57:12.198608] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.003s
[2023-04-29 11:57:14.830870] INFO: derived_feature_extractor: /y_2021, 888541
[2023-04-29 11:57:18.074918] INFO: derived_feature_extractor: /y_2022, 1029063
[2023-04-29 11:57:19.551099] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[12.088173s].
[2023-04-29 11:57:19.560709] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2023-04-29 11:57:26.422026] INFO: A股股票过滤: 过滤 /y_2021, 99528/0/888541
[2023-04-29 11:57:33.472612] INFO: A股股票过滤: 过滤 /y_2022, 105327/0/1029063
[2023-04-29 11:57:33.478869] INFO: A股股票过滤: 过滤完成, 204855 + 0
[2023-04-29 11:57:33.498371] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[13.937649s].
[2023-04-29 11:57:33.509920] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-04-29 11:57:33.879108] INFO: dropnan: /y_2021, 84783/99528
[2023-04-29 11:57:34.217188] INFO: dropnan: /y_2022, 105169/105327
[2023-04-29 11:57:34.289257] INFO: dropnan: 行数: 189952/204855
[2023-04-29 11:57:34.295530] INFO: moduleinvoker: dropnan.v1 运行完成[0.785593s].
[2023-04-29 11:57:34.316405] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2023-04-29 11:57:34.665991] INFO: StockRanker预测: /y_2021 ..
[2023-04-29 11:57:35.055643] INFO: StockRanker预测: /y_2022 ..
[2023-04-29 11:57:35.518328] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[1.201909s].
[2023-04-29 11:57:35.527640] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2023-04-29 11:57:39.414452] INFO: A股股票过滤: 过滤 /data, 189952/0/189952
[2023-04-29 11:57:39.417312] INFO: A股股票过滤: 过滤完成, 189952 + 0
[2023-04-29 11:57:39.434502] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[3.906865s].
[2023-04-29 11:57:42.905201] INFO: moduleinvoker: backtest.v8 开始运行..
[2023-04-29 11:57:42.911986] INFO: backtest: biglearning backtest:V8.6.3
[2023-04-29 11:57:42.913929] INFO: backtest: product_type:stock by specified
[2023-04-29 11:57:42.995881] INFO: moduleinvoker: cached.v2 开始运行..
[2023-04-29 11:57:51.527866] INFO: backtest: 读取股票行情完成:2984802
[2023-04-29 11:57:53.917887] INFO: moduleinvoker: cached.v2 运行完成[10.922034s].
[2023-04-29 11:58:07.414442] INFO: backtest: algo history_data=DataSource(72646b17622b44448c8dbc443c22edbcT)
[2023-04-29 11:58:07.416945] INFO: algo: TradingAlgorithm V1.8.9
[2023-04-29 11:58:16.153792] INFO: algo: trading transform...
[2023-04-29 12:25:08.985358] INFO: Performance: Simulated 360 trading days out of 360.
[2023-04-29 12:25:08.987405] INFO: Performance: first open: 2021-06-07 09:30:00+00:00
[2023-04-29 12:25:08.988758] INFO: Performance: last close: 2022-11-28 15:00:00+00:00
[2023-04-29 12:25:14.160118] INFO: moduleinvoker: backtest.v8 运行完成[1651.254926s].
[2023-04-29 12:25:14.161831] INFO: moduleinvoker: trade.v4 运行完成[1654.718507s].
[2023-04-29 12:25:14.175019] INFO: moduleinvoker: strategy_turn_analysis.v1 开始运行..
[2023-04-29 12:25:16.618891] INFO: moduleinvoker: strategy_turn_analysis.v1 运行完成[2.443863s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-93308c0593ce47e3a898a555a42d660a"}/bigcharts-data-end
current_date is: 2021-06-07
amount of unique_stocks : 492, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
current_date is: 2021-06-08
current_date is: 2021-06-09
current_date is: 2021-06-10
current_date is: 2021-06-11
amount of unique_stocks : 493, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-06-11 over----------------------------------------------------------------------------------------
current_date is: 2021-06-15
current_date is: 2021-06-16
current_date is: 2021-06-17
current_date is: 2021-06-18
current_date is: 2021-06-21
amount of unique_stocks : 494, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-06-21 over----------------------------------------------------------------------------------------
current_date is: 2021-06-22
current_date is: 2021-06-23
current_date is: 2021-06-24
current_date is: 2021-06-25
current_date is: 2021-06-28
amount of unique_stocks : 494, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-06-28 over----------------------------------------------------------------------------------------
current_date is: 2021-06-29
current_date is: 2021-06-30
current_date is: 2021-07-01
current_date is: 2021-07-02
current_date is: 2021-07-05
amount of unique_stocks : 493, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-07-05 over----------------------------------------------------------------------------------------
current_date is: 2021-07-06
current_date is: 2021-07-07
current_date is: 2021-07-08
current_date is: 2021-07-09
current_date is: 2021-07-12
amount of unique_stocks : 493, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-07-12 over----------------------------------------------------------------------------------------
current_date is: 2021-07-13
current_date is: 2021-07-14
current_date is: 2021-07-15
current_date is: 2021-07-16
current_date is: 2021-07-19
amount of unique_stocks : 493, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-07-19 over----------------------------------------------------------------------------------------
current_date is: 2021-07-20
current_date is: 2021-07-21
current_date is: 2021-07-22
current_date is: 2021-07-23
current_date is: 2021-07-26
amount of unique_stocks : 494, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-07-26 over----------------------------------------------------------------------------------------
current_date is: 2021-07-27
current_date is: 2021-07-28
current_date is: 2021-07-29
current_date is: 2021-07-30
current_date is: 2021-08-02
amount of unique_stocks : 494, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-08-02 over----------------------------------------------------------------------------------------
current_date is: 2021-08-03
current_date is: 2021-08-04
current_date is: 2021-08-05
current_date is: 2021-08-06
current_date is: 2021-08-09
amount of unique_stocks : 493, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-08-09 over----------------------------------------------------------------------------------------
current_date is: 2021-08-10
current_date is: 2021-08-11
current_date is: 2021-08-12
current_date is: 2021-08-13
current_date is: 2021-08-16
amount of unique_stocks : 492, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-08-16 over----------------------------------------------------------------------------------------
current_date is: 2021-08-17
current_date is: 2021-08-18
current_date is: 2021-08-19
current_date is: 2021-08-20
current_date is: 2021-08-23
amount of unique_stocks : 493, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-08-23 over----------------------------------------------------------------------------------------
current_date is: 2021-08-24
current_date is: 2021-08-25
current_date is: 2021-08-26
current_date is: 2021-08-27
current_date is: 2021-08-30
amount of unique_stocks : 492, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-08-30 over----------------------------------------------------------------------------------------
current_date is: 2021-08-31
current_date is: 2021-09-01
current_date is: 2021-09-02
current_date is: 2021-09-03
current_date is: 2021-09-06
amount of unique_stocks : 491, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-09-06 over----------------------------------------------------------------------------------------
current_date is: 2021-09-07
current_date is: 2021-09-08
current_date is: 2021-09-09
current_date is: 2021-09-10
current_date is: 2021-09-13
amount of unique_stocks : 493, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-09-13 over----------------------------------------------------------------------------------------
current_date is: 2021-09-14
current_date is: 2021-09-15
current_date is: 2021-09-16
current_date is: 2021-09-17
current_date is: 2021-09-22
amount of unique_stocks : 492, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-09-22 over----------------------------------------------------------------------------------------
current_date is: 2021-09-23
current_date is: 2021-09-24
current_date is: 2021-09-27
current_date is: 2021-09-28
current_date is: 2021-09-29
amount of unique_stocks : 493, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-09-29 over----------------------------------------------------------------------------------------
current_date is: 2021-09-30
current_date is: 2021-10-08
current_date is: 2021-10-11
current_date is: 2021-10-12
current_date is: 2021-10-13
amount of unique_stocks : 492, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-10-13 over----------------------------------------------------------------------------------------
current_date is: 2021-10-14
current_date is: 2021-10-15
current_date is: 2021-10-18
current_date is: 2021-10-19
current_date is: 2021-10-20
amount of unique_stocks : 491, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-10-20 over----------------------------------------------------------------------------------------
current_date is: 2021-10-21
current_date is: 2021-10-22
current_date is: 2021-10-25
current_date is: 2021-10-26
current_date is: 2021-10-27
amount of unique_stocks : 493, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-10-27 over----------------------------------------------------------------------------------------
current_date is: 2021-10-28
current_date is: 2021-10-29
current_date is: 2021-11-01
current_date is: 2021-11-02
current_date is: 2021-11-03
amount of unique_stocks : 494, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-11-03 over----------------------------------------------------------------------------------------
current_date is: 2021-11-04
current_date is: 2021-11-05
current_date is: 2021-11-08
current_date is: 2021-11-09
current_date is: 2021-11-10
amount of unique_stocks : 494, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-11-10 over----------------------------------------------------------------------------------------
current_date is: 2021-11-11
current_date is: 2021-11-12
current_date is: 2021-11-15
current_date is: 2021-11-16
current_date is: 2021-11-17
amount of unique_stocks : 494, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-11-17 over----------------------------------------------------------------------------------------
current_date is: 2021-11-18
current_date is: 2021-11-19
current_date is: 2021-11-22
current_date is: 2021-11-23
current_date is: 2021-11-24
amount of unique_stocks : 494, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-11-24 over----------------------------------------------------------------------------------------
current_date is: 2021-11-25
current_date is: 2021-11-26
current_date is: 2021-11-29
current_date is: 2021-11-30
current_date is: 2021-12-01
amount of unique_stocks : 493, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-12-01 over----------------------------------------------------------------------------------------
current_date is: 2021-12-02
current_date is: 2021-12-03
current_date is: 2021-12-06
current_date is: 2021-12-07
current_date is: 2021-12-08
amount of unique_stocks : 493, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-12-08 over----------------------------------------------------------------------------------------
current_date is: 2021-12-09
current_date is: 2021-12-10
current_date is: 2021-12-13
current_date is: 2021-12-14
current_date is: 2021-12-15
amount of unique_stocks : 486, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-12-15 over----------------------------------------------------------------------------------------
current_date is: 2021-12-16
current_date is: 2021-12-17
current_date is: 2021-12-20
current_date is: 2021-12-21
current_date is: 2021-12-22
amount of unique_stocks : 485, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-12-22 over----------------------------------------------------------------------------------------
current_date is: 2021-12-23
current_date is: 2021-12-24
current_date is: 2021-12-27
current_date is: 2021-12-28
current_date is: 2021-12-29
amount of unique_stocks : 486, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2021-12-29 over----------------------------------------------------------------------------------------
current_date is: 2021-12-30
current_date is: 2021-12-31
current_date is: 2022-01-04
current_date is: 2022-01-05
current_date is: 2022-01-06
amount of unique_stocks : 486, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-01-06 over----------------------------------------------------------------------------------------
current_date is: 2022-01-07
current_date is: 2022-01-10
current_date is: 2022-01-11
current_date is: 2022-01-12
current_date is: 2022-01-13
amount of unique_stocks : 487, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-01-13 over----------------------------------------------------------------------------------------
current_date is: 2022-01-14
current_date is: 2022-01-17
current_date is: 2022-01-18
current_date is: 2022-01-19
current_date is: 2022-01-20
amount of unique_stocks : 485, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-01-20 over----------------------------------------------------------------------------------------
current_date is: 2022-01-21
current_date is: 2022-01-24
current_date is: 2022-01-25
current_date is: 2022-01-26
current_date is: 2022-01-27
amount of unique_stocks : 485, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-01-27 over----------------------------------------------------------------------------------------
current_date is: 2022-01-28
current_date is: 2022-02-07
current_date is: 2022-02-08
current_date is: 2022-02-09
current_date is: 2022-02-10
amount of unique_stocks : 487, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-02-10 over----------------------------------------------------------------------------------------
current_date is: 2022-02-11
current_date is: 2022-02-14
current_date is: 2022-02-15
current_date is: 2022-02-16
current_date is: 2022-02-17
amount of unique_stocks : 486, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-02-17 over----------------------------------------------------------------------------------------
current_date is: 2022-02-18
current_date is: 2022-02-21
current_date is: 2022-02-22
current_date is: 2022-02-23
current_date is: 2022-02-24
amount of unique_stocks : 486, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-02-24 over----------------------------------------------------------------------------------------
current_date is: 2022-02-25
current_date is: 2022-02-28
current_date is: 2022-03-01
current_date is: 2022-03-02
current_date is: 2022-03-03
amount of unique_stocks : 486, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-03-03 over----------------------------------------------------------------------------------------
current_date is: 2022-03-04
current_date is: 2022-03-07
current_date is: 2022-03-08
current_date is: 2022-03-09
current_date is: 2022-03-10
amount of unique_stocks : 485, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-03-10 over----------------------------------------------------------------------------------------
current_date is: 2022-03-11
current_date is: 2022-03-14
current_date is: 2022-03-15
current_date is: 2022-03-16
current_date is: 2022-03-17
amount of unique_stocks : 487, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-03-17 over----------------------------------------------------------------------------------------
current_date is: 2022-03-18
current_date is: 2022-03-21
current_date is: 2022-03-22
current_date is: 2022-03-23
current_date is: 2022-03-24
amount of unique_stocks : 487, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-03-24 over----------------------------------------------------------------------------------------
current_date is: 2022-03-25
current_date is: 2022-03-28
current_date is: 2022-03-29
current_date is: 2022-03-30
current_date is: 2022-03-31
amount of unique_stocks : 487, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-03-31 over----------------------------------------------------------------------------------------
current_date is: 2022-04-01
current_date is: 2022-04-06
current_date is: 2022-04-07
current_date is: 2022-04-08
current_date is: 2022-04-11
amount of unique_stocks : 487, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-04-11 over----------------------------------------------------------------------------------------
current_date is: 2022-04-12
current_date is: 2022-04-13
current_date is: 2022-04-14
current_date is: 2022-04-15
current_date is: 2022-04-18
amount of unique_stocks : 486, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-04-18 over----------------------------------------------------------------------------------------
current_date is: 2022-04-19
current_date is: 2022-04-20
current_date is: 2022-04-21
current_date is: 2022-04-22
current_date is: 2022-04-25
amount of unique_stocks : 486, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-04-25 over----------------------------------------------------------------------------------------
current_date is: 2022-04-26
current_date is: 2022-04-27
current_date is: 2022-04-28
current_date is: 2022-04-29
current_date is: 2022-05-05
amount of unique_stocks : 487, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-05-05 over----------------------------------------------------------------------------------------
current_date is: 2022-05-06
current_date is: 2022-05-09
current_date is: 2022-05-10
current_date is: 2022-05-11
current_date is: 2022-05-12
amount of unique_stocks : 487, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-05-12 over----------------------------------------------------------------------------------------
current_date is: 2022-05-13
current_date is: 2022-05-16
current_date is: 2022-05-17
current_date is: 2022-05-18
current_date is: 2022-05-19
amount of unique_stocks : 487, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-05-19 over----------------------------------------------------------------------------------------
current_date is: 2022-05-20
current_date is: 2022-05-23
current_date is: 2022-05-24
current_date is: 2022-05-25
current_date is: 2022-05-26
amount of unique_stocks : 486, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-05-26 over----------------------------------------------------------------------------------------
current_date is: 2022-05-27
current_date is: 2022-05-30
current_date is: 2022-05-31
current_date is: 2022-06-01
current_date is: 2022-06-02
amount of unique_stocks : 484, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-06-02 over----------------------------------------------------------------------------------------
current_date is: 2022-06-06
current_date is: 2022-06-07
current_date is: 2022-06-08
current_date is: 2022-06-09
current_date is: 2022-06-10
amount of unique_stocks : 484, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-06-10 over----------------------------------------------------------------------------------------
current_date is: 2022-06-13
current_date is: 2022-06-14
current_date is: 2022-06-15
current_date is: 2022-06-16
current_date is: 2022-06-17
amount of unique_stocks : 479, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-06-17 over----------------------------------------------------------------------------------------
current_date is: 2022-06-20
current_date is: 2022-06-21
current_date is: 2022-06-22
current_date is: 2022-06-23
current_date is: 2022-06-24
amount of unique_stocks : 480, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-06-24 over----------------------------------------------------------------------------------------
current_date is: 2022-06-27
current_date is: 2022-06-28
current_date is: 2022-06-29
current_date is: 2022-06-30
current_date is: 2022-07-01
amount of unique_stocks : 480, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-07-01 over----------------------------------------------------------------------------------------
current_date is: 2022-07-04
current_date is: 2022-07-05
current_date is: 2022-07-06
current_date is: 2022-07-07
current_date is: 2022-07-08
amount of unique_stocks : 480, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-07-08 over----------------------------------------------------------------------------------------
current_date is: 2022-07-11
current_date is: 2022-07-12
current_date is: 2022-07-13
current_date is: 2022-07-14
current_date is: 2022-07-15
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-07-15 over----------------------------------------------------------------------------------------
current_date is: 2022-07-18
current_date is: 2022-07-19
current_date is: 2022-07-20
current_date is: 2022-07-21
current_date is: 2022-07-22
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-07-22 over----------------------------------------------------------------------------------------
current_date is: 2022-07-25
current_date is: 2022-07-26
current_date is: 2022-07-27
current_date is: 2022-07-28
current_date is: 2022-07-29
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-07-29 over----------------------------------------------------------------------------------------
current_date is: 2022-08-01
current_date is: 2022-08-02
current_date is: 2022-08-03
current_date is: 2022-08-04
current_date is: 2022-08-05
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-08-05 over----------------------------------------------------------------------------------------
current_date is: 2022-08-08
current_date is: 2022-08-09
current_date is: 2022-08-10
current_date is: 2022-08-11
current_date is: 2022-08-12
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-08-12 over----------------------------------------------------------------------------------------
current_date is: 2022-08-15
current_date is: 2022-08-16
current_date is: 2022-08-17
current_date is: 2022-08-18
current_date is: 2022-08-19
amount of unique_stocks : 480, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-08-19 over----------------------------------------------------------------------------------------
current_date is: 2022-08-22
current_date is: 2022-08-23
current_date is: 2022-08-24
current_date is: 2022-08-25
current_date is: 2022-08-26
amount of unique_stocks : 480, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-08-26 over----------------------------------------------------------------------------------------
current_date is: 2022-08-29
current_date is: 2022-08-30
current_date is: 2022-08-31
current_date is: 2022-09-01
current_date is: 2022-09-02
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-09-02 over----------------------------------------------------------------------------------------
current_date is: 2022-09-05
current_date is: 2022-09-06
current_date is: 2022-09-07
current_date is: 2022-09-08
current_date is: 2022-09-09
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-09-09 over----------------------------------------------------------------------------------------
current_date is: 2022-09-13
current_date is: 2022-09-14
current_date is: 2022-09-15
current_date is: 2022-09-16
current_date is: 2022-09-19
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-09-19 over----------------------------------------------------------------------------------------
current_date is: 2022-09-20
current_date is: 2022-09-21
current_date is: 2022-09-22
current_date is: 2022-09-23
current_date is: 2022-09-26
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-09-26 over----------------------------------------------------------------------------------------
current_date is: 2022-09-27
current_date is: 2022-09-28
current_date is: 2022-09-29
current_date is: 2022-09-30
current_date is: 2022-10-10
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-10-10 over----------------------------------------------------------------------------------------
current_date is: 2022-10-11
current_date is: 2022-10-12
current_date is: 2022-10-13
current_date is: 2022-10-14
current_date is: 2022-10-17
amount of unique_stocks : 480, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-10-17 over----------------------------------------------------------------------------------------
current_date is: 2022-10-18
current_date is: 2022-10-19
current_date is: 2022-10-20
current_date is: 2022-10-21
current_date is: 2022-10-24
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-10-24 over----------------------------------------------------------------------------------------
current_date is: 2022-10-25
current_date is: 2022-10-26
current_date is: 2022-10-27
current_date is: 2022-10-28
current_date is: 2022-10-31
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-10-31 over----------------------------------------------------------------------------------------
current_date is: 2022-11-01
current_date is: 2022-11-02
current_date is: 2022-11-03
current_date is: 2022-11-04
current_date is: 2022-11-07
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-11-07 over----------------------------------------------------------------------------------------
current_date is: 2022-11-08
current_date is: 2022-11-09
current_date is: 2022-11-10
current_date is: 2022-11-11
current_date is: 2022-11-14
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-11-14 over----------------------------------------------------------------------------------------
current_date is: 2022-11-15
current_date is: 2022-11-16
current_date is: 2022-11-17
current_date is: 2022-11-18
current_date is: 2022-11-21
amount of unique_stocks : 480, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-11-21 over----------------------------------------------------------------------------------------
current_date is: 2022-11-22
current_date is: 2022-11-23
current_date is: 2022-11-24
current_date is: 2022-11-25
current_date is: 2022-11-28
amount of unique_stocks : 481, weights objective should be considered
Using Soft Constraints, and the Optimization result is optimal before the relaxation
----------------------------------------------------------------------------------------date 2022-11-28 over----------------------------------------------------------------------------------------
- 收益率-5.78%
- 年化收益率-4.08%
- 基准收益率-9.53%
- 阿尔法0.04
- 贝塔1.03
- 夏普比率-0.2
- 胜率0.5
- 盈亏比0.98
- 收益波动率22.56%
- 信息比率0.02
- 最大回撤31.08%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-03846591216f4d1784aa53d6c94d0e3c"}/bigcharts-data-end