{"description":"实验创建于2019/4/24","graph":{"edges":[{"to_node_id":"-64:input_ds","from_node_id":"-6:data"},{"to_node_id":"-6:instruments","from_node_id":"-21:data"},{"to_node_id":"-43:instruments","from_node_id":"-21:data"},{"to_node_id":"-6:features","from_node_id":"-35:data"},{"to_node_id":"-30:input_data","from_node_id":"-64:sorted_data"},{"to_node_id":"-43:options_data","from_node_id":"-30:data"}],"nodes":[{"node_id":"-6","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-6"},{"name":"features","node_id":"-6"}],"output_ports":[{"name":"data","node_id":"-6"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-21","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-11-26","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-21"}],"output_ports":[{"name":"data","node_id":"-21"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-35","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"pb_lf_0\npe_ttm_0\namount_0\nfs_roe_ttm_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-35"}],"output_ports":[{"name":"data","node_id":"-35"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-43","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n \n # 加载股票指标数据,数据继承自m4模块\n context.indicator_data = context.options['data'].read_df().set_index('date')\n print('indicator_data:', context.indicator_data.head()) \n # 设置交易费用,买入是万三,卖出是千分之1.3,如果不足5元按5元算\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 设置股票数量\n context.stock_num = 30\n \n # 调仓天数,22个交易日大概就是一个月。可以理解为一个月换仓一次\n context.rebalance_days = 22\n \n # 如果策略运行中,需要将数据进行保存,可以借用extension这个对象,类型为dict\n # 比如当前运行的k线的索引,比如个股持仓天数、买入均价\n if 'index' not in context.extension:\n context.extension['index'] = 0\n \n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n # 按每个K线递增\n context.extension['index'] += 1\n \n # 每隔22个交易日进行换仓\n if context.extension['index'] % context.rebalance_days != 0:\n return \n \n # 日期\n date = data.current_dt.strftime('%Y-%m-%d')\n \n # 买入股票列表\n stock_to_buy = context.indicator_data.loc[date]['instrument'][:context.stock_num]\n \n # 目前持仓列表 \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions]\n # 继续持有股票列表\n no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]\n # 卖出股票列表 \n stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]\n # 执行卖出\n for stock in stock_to_sell:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0)\n \n # 如果当天没有买入就返回\n if len(stock_to_buy) == 0:\n return\n \n # 等权重\n weight = 1 / len(stock_to_buy)\n # 执行买入\n for cp in stock_to_buy:\n if data.can_trade(context.symbol(cp)):\n context.order_target_percent(context.symbol(cp), weight)","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"open","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-43"},{"name":"options_data","node_id":"-43"},{"name":"history_ds","node_id":"-43"},{"name":"benchmark_ds","node_id":"-43"},{"name":"trading_calendar","node_id":"-43"}],"output_ports":[{"name":"raw_perf","node_id":"-43"}],"cacheable":false,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-64","module_id":"BigQuantSpace.sort.sort-v4","parameters":[{"name":"sort_by","value":"fs_roe_ttm_0","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-64"},{"name":"sort_by_ds","node_id":"-64"}],"output_ports":[{"name":"sorted_data","node_id":"-64"}],"cacheable":true,"seq_num":6,"comment":"按多个因子进行排序","comment_collapsed":true},{"node_id":"-30","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"pb_lf_0 < 2 & pe_ttm_0 < 20 & amount_0 > 0 & pb_lf_0 > 0 & pe_ttm_0 > 0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-30"}],"output_ports":[{"name":"data","node_id":"-30"},{"name":"left_data","node_id":"-30"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-6' Position='259,164,200,200'/><node_position Node='-21' Position='16,66,200,200'/><node_position Node='-35' Position='469,69,200,200'/><node_position Node='-43' Position='160,385,200,200'/><node_position Node='-64' Position='235,230,200,200'/><node_position Node='-30' Position='237,302,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-12-04 11:43:53.547462] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-04 11:43:53.566463] INFO: moduleinvoker: 命中缓存
[2021-12-04 11:43:53.568304] INFO: moduleinvoker: instruments.v2 运行完成[0.020859s].
[2021-12-04 11:43:53.573508] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-04 11:43:53.586109] INFO: moduleinvoker: 命中缓存
[2021-12-04 11:43:53.588675] INFO: moduleinvoker: input_features.v1 运行完成[0.01517s].
[2021-12-04 11:43:53.701033] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-04 11:43:57.711948] INFO: 基础特征抽取: 年份 2018, 特征行数=210561
[2021-12-04 11:44:01.138151] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2021-12-04 11:44:17.910115] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2021-12-04 11:44:22.365756] INFO: 基础特征抽取: 年份 2021, 特征行数=945333
[2021-12-04 11:44:23.992920] INFO: 基础特征抽取: 总行数: 2986722
[2021-12-04 11:44:24.002270] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[30.301255s].
[2021-12-04 11:44:24.009281] INFO: moduleinvoker: sort.v4 开始运行..
[2021-12-04 11:44:33.126036] INFO: moduleinvoker: sort.v4 运行完成[9.116751s].
[2021-12-04 11:44:33.135276] INFO: moduleinvoker: filter.v3 开始运行..
[2021-12-04 11:44:33.153098] INFO: filter: 使用表达式 pb_lf_0 < 2 & pe_ttm_0 < 20 & amount_0 > 0 & pb_lf_0 > 0 & pe_ttm_0 > 0 过滤
[2021-12-04 11:44:34.425707] INFO: filter: 过滤 /data, 462739/0/2986722
[2021-12-04 11:44:34.471715] INFO: moduleinvoker: filter.v3 运行完成[1.336423s].
[2021-12-04 11:44:36.229710] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-12-04 11:44:36.235272] INFO: backtest: biglearning backtest:V8.6.0
[2021-12-04 11:44:36.236528] INFO: backtest: product_type:stock by specified
[2021-12-04 11:44:36.332003] INFO: moduleinvoker: cached.v2 开始运行..
[2021-12-04 11:44:49.300235] INFO: backtest: 读取股票行情完成:3935729
[2021-12-04 11:44:56.834978] INFO: moduleinvoker: cached.v2 运行完成[20.502985s].
[2021-12-04 11:45:01.203844] INFO: algo: TradingAlgorithm V1.8.5
[2021-12-04 11:45:02.527820] INFO: algo: trading transform...
[2021-12-04 11:45:10.406992] INFO: Performance: Simulated 705 trading days out of 705.
[2021-12-04 11:45:10.408465] INFO: Performance: first open: 2019-01-02 09:30:00+00:00
[2021-12-04 11:45:10.409775] INFO: Performance: last close: 2021-11-26 15:00:00+00:00
[2021-12-04 11:45:18.750327] INFO: moduleinvoker: backtest.v8 运行完成[42.520621s].
[2021-12-04 11:45:18.752020] INFO: moduleinvoker: trade.v4 运行完成[44.272706s].
indicator_data: amount_0 fs_roe_ttm_0 instrument pb_lf_0 pe_ttm_0
date
2018-10-08 81723693.0 3.8235 601898.SHA 0.764548 19.996084
2018-10-08 25674450.0 3.9840 000698.SZA 0.762213 19.132044
2018-10-08 25748423.0 4.1403 300158.SZA 0.752570 18.176720
2018-10-08 19215739.0 4.2376 600894.SHA 0.721665 17.030197
2018-10-08 44271809.0 4.3718 600811.SHA 0.710191 16.182467
- 收益率60.92%
- 年化收益率18.54%
- 基准收益率61.43%
- 阿尔法0.06
- 贝塔0.66
- 夏普比率0.78
- 胜率0.48
- 盈亏比1.68
- 收益波动率20.81%
- 信息比率-0.0
- 最大回撤26.13%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-bc35305e6b61466cae5a0c7423ca5621"}/bigcharts-data-end