资金流动量追涨策略,牛市策略
资金流动性充足,小盘股活跃,题材快速轮动阶段
存量资金萎缩;无市场增量资金入场,大盘持续缩量,连续下跌; 中小市值股票失血严重阶段
样例因子 通过协方差和数据相关性统计---机器学习挖掘 -23个因子 寻找一些传统 通达信,同花顺 东方财富的选股指标 将上述整合成 特征因子表达式,进行样本数据筛选
# 本代码由可视化策略环境自动生成 2022年2月26日 17:52
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m4_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
df = input_1.read_pickle()
feature_len = len(input_2.read_pickle())
df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))
data_1 = DataSource.write_pickle(df)
return Outputs(data_1=data_1)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m4_post_run_bigquant_run(outputs):
return outputs
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m8_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
df = input_1.read_pickle()
feature_len = len(input_2.read_pickle())
df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))
data_1 = DataSource.write_pickle(df)
return Outputs(data_1=data_1)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m8_post_run_bigquant_run(outputs):
return outputs
# 用户的自定义层需要写到字典中,比如
# {
# "MyLayer": MyLayer
# }
m5_custom_objects_bigquant_run = {
}
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m24_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
pred_label = input_1.read_pickle()
df = input_2.read_df()
df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m24_post_run_bigquant_run(outputs):
return outputs
# 回测引擎:初始化函数,只执行一次
def m39_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
# 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
# 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
stock_count = 1
# 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
context.stock_weights = [1]
# 设置每只股票占用的最大资金比例
context.max_cash_per_instrument = 1
context.options['hold_days'] = 1
# 回测引擎:每日数据处理函数,每天执行一次
def m39_handle_data_bigquant_run(context, data):
# 获取当前持仓
positions = {e.symbol: p.amount * p.last_sale_price
for e, p in context.portfolio.positions.items()}
today = data.current_dt.strftime('%Y-%m-%d')
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == today]
# try:
# #大盘风控模块,读取风控数据
# benckmark_risk=ranker_prediction['bm_0'].values[0]
# if benckmark_risk > 0:
# for instrument in positions.keys():
# context.order_target(context.symbol(instrument), 0)
# print(today,'大盘风控止损触发,全仓卖出')
# return
# except:
# print('--!')
#当risk为1时,市场有风险,全部平仓,不再执行其它操作
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
#cash_for_buy = min(context.portfolio.portfolio_value/2,context.portfolio.cash)
#cash_for_buy = context.portfolio.portfolio_value
#print(ranker_prediction)
#cash_for_buy = context.portfolio.portfolio_value
cash_for_buy = context.portfolio.cash
buy_instruments = list(ranker_prediction.instrument)
sell_instruments = [instrument.symbol for instrument in context.portfolio.positions.keys()]
to_buy = set(buy_instruments[:1]) - set(sell_instruments)
to_sell = set(sell_instruments) - set(buy_instruments[:1])
for instrument in to_sell:
context.order_target(context.symbol(instrument), 0)
for instrument in to_buy:
context.order_value(context.symbol(instrument), cash_for_buy)
def m39_prepare_bigquant_run(context):
# 获取st状态和涨跌停状态
context.status_df = D.features(instruments =context.instruments,start_date = context.start_date, end_date = context.end_date,
fields=['st_status_0','price_limit_status_0','price_limit_status_1'])
def m39_before_trading_start_bigquant_run(context, data):
pass
# # 获取涨跌停状态数据
# df_price_limit_status=context.status_df.set_index('date')
# today=data.current_dt.strftime('%Y-%m-%d')
# # 得到当前未完成订单
# for orders in get_open_orders().values():
# # 循环,撤销订单
# for _order in orders:
# ins=str(_order.sid.symbol)
# try:
# #判断一下如果当日涨停,则取消卖单
# if df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.loc[today]>2 and _order.amount<0:
# cancel_order(_order)
# print(today,'尾盘涨停取消卖单',ins)
# except:
# continue
m1 = M.instruments.v2(
start_date='2013-02-01',
end_date='2019-10-30',
market='CN_STOCK_A',
instrument_list=' ',
max_count=0
)
m21 = M.use_datasource.v1(
instruments=m1.data,
datasource_id='net_amount_CN_STOCK_A',
start_date='',
end_date=''
)
m22 = M.filter.v3(
input_data=m21.data,
expr='mf_net_amount_l>8000000',
output_left_data=False
)
m23 = M.select_columns.v3(
input_ds=m22.data,
columns='date,instrument',
reverse_select=False
)
m20 = M.use_datasource.v1(
instruments=m1.data,
datasource_id='bar1d_CN_STOCK_A',
start_date='',
end_date=''
)
m29 = M.join.v3(
data1=m20.data,
data2=m23.data,
on='date,instrument',
how='inner',
sort=False
)
m31 = M.auto_labeler_on_datasource.v1(
input_data=m29.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
#shift(close, -5) / shift(open, -1)
# 极值处理:用1%和99%分位的值做clip
#clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 将分数映射到分类,这里使用20个分类
#all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
#where(shift(high, -1) == shift(low, -1), NaN, label)
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(high, -3) / shift(open, -1)-1
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
#where(label>0.5, NaN, label)
#where(label<-0.5, NaN, label)
""",
drop_na_label=True,
cast_label_int=False,
date_col='date',
instrument_col='instrument'
)
m3 = M.input_features.v1(
features="""return_5/return_20#43: 5天的收益率/20天的收益率
rank_amount_5#45:最近5日的成交额排名
avg_turn_10#46:平均10天的换手率
market_cap_float_0<280000000000#47:流通市值<280亿
pe_ttm_0>0#48:ttm pe市盈率要大于0
pb_lf_0#49:市净率
sum(mf_net_pct_main_0>0.12,30)>11#50:统计30天内主力流入占比大于12%的天数
fs_roa_ttm_0>5#51:总资产报酬率roa要大于5
fs_cash_ratio_0#52:现金流量
close_0>ts_max(close_0,56)#53:当日收盘价破 56天最高价(创新高)
ta_sma_10_0/ta_sma_30_0#56: 10天的sma线/30天的sma线
ta_sar_0# 58:SAR抛物线指标
swing_volatility_10_0/swing_volatility_60_0 #59: 10天的波动率/60天的波动率
ta_cci_14_0 #60:CCI -14天的指标
rank_return_3 #61: 3天收益率的 排名
mf_net_amount_0>mf_net_amount_1 #62: 判断 当日的资金流入净额>昨日资金流入净额
mf_net_amount_xl_0>mean(mf_net_amount_xl_0, 30)# 64:当天的超大单流入净量>平均30天内的超大单流入净量(30天超大单MA线)
cond4= (close_0-close_1)/close_1 >0.05# 65:当天涨幅>5%
(close_0-close_30)/close_30>1.25# 66:30天内的涨幅大于125%
(close_0-close_5)/close_5>1.16# 67:5天内的涨幅>116%
list_days_0>365# 68:上市天数>365天
ta_bbands_middleband_28_0 #69:布林带28天均线
cond28=sum(price_limit_status_0==3,80)>5 #70:统计80天内 涨停板的次数大于5"""
)
m25 = M.input_features.v1(
features_ds=m3.data,
features="""
# #号开始的表示注释,注释需单独一行
# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
#st_status_0
#price_limit_status_0
#price_limit_status_1
#open_0
#close_0
#st_status_0
#fac2=where((open_0/high_0<0.97)&(high_0/close_0<1.04), 1,0)#(open_0/high_0<0.97)&(high_0/close_0<1.04)
#cond15=where(st_status_0==0,1,0)
#cond16=volume_0>volume_1
#cond17=ta_ma(close_0,5,derive='long')
#cond18=ta_trix(close_0, derive='long')
#fs_roe_ttm_0>5
#pe_ttm_0>0
#market_cap_float_0< 20000000000
#open_0
#close_0
#volume_2
#volume_0
#volume_1
#cond19=((volume_2/volume_1<2.5)|(high_0/close_0 <1.05))&(volume_2/volume_0>1)
#open_price/high_price<1) and (high_price/close_price<1.03)
#cond22=(open_0/high_0<0.97)&(high_0/close_0<1.04)
#close_0>open_0
#some321=ta_trix(close_0, derive='long')
#some321=ta_trix(close_1, derive='long')#新加的--可删除
#some321=ta_trix(close_2, derive='long')#新加的--可删除
#some321=ta_trix(close_3, derive='long')#新加的--可删除
#some321=ta_trix(close_4, derive='long')#新加的--可删除
#some456=ta_dma(close_0, 'long')#新加的,可删除
#some456=ta_dma(close_1, 'long')#新加的,可删除
#some456=ta_dma(close_2, 'long')#新加的,可删除
#cond30=mf_net_amount_main_0>0.1
open_1
close_1
close_0
high_1
open_0
low_0
price_limit_status_0
volume_0
open_0/close_1
cond3=low_0 > mean(close_0,20)
#(今日收盘价-昨日收盘价)/昨日收盘价*100%
cond1=ta_trix(close_0, derive='long')
cond2=ta_dma(close_0, 'long')
#----当日最低价 站稳60日线
cond3=low_0 > mean(close_0,20)
#(今日收盘价-昨日收盘价)/昨日收盘价*100%
cond4= (close_0-close_1)/close_1 >0.04
cond5=close_0>open_0
cond6=st_status_0==0
cond7=ta_macd(close_0,'long')
cond8=ta_ma(close_0,5, derive='long')"""
)
m15 = M.general_feature_extractor.v7(
instruments=m1.data,
features=m25.data,
start_date='',
end_date='',
before_start_days=58
)
m16 = M.derived_feature_extractor.v3(
input_data=m15.data,
features=m25.data,
date_col='date',
instrument_col='instrument',
drop_na=True,
remove_extra_columns=False
)
m7 = M.join.v3(
data1=m31.data,
data2=m16.data,
on='date,instrument',
how='inner',
sort=False
)
m2 = M.filter.v3(
input_data=m7.data,
expr='cond4 and cond6 and cond7 and cond8',
output_left_data=False
)
m38 = M.features_short.v1(
input_1=m3.data
)
m26 = M.dl_convert_to_bin.v2(
input_data=m2.data,
features=m38.data_1,
window_size=2,
feature_clip=-2,
flatten=True,
window_along_col='instrument'
)
m4 = M.cached.v3(
input_1=m26.data,
input_2=m38.data_1,
run=m4_run_bigquant_run,
post_run=m4_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m9 = M.instruments.v2(
start_date=T.live_run_param('trading_date', '2019-10-30'),
end_date=T.live_run_param('trading_date', '2021-12-20'),
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m17 = M.general_feature_extractor.v7(
instruments=m9.data,
features=m25.data,
start_date='',
end_date='',
before_start_days=58
)
m18 = M.derived_feature_extractor.v3(
input_data=m17.data,
features=m25.data,
date_col='date',
instrument_col='instrument',
drop_na=True,
remove_extra_columns=False
)
m13 = M.use_datasource.v1(
instruments=m9.data,
datasource_id='net_amount_CN_STOCK_A',
start_date='',
end_date=''
)
m14 = M.filter.v3(
input_data=m13.data,
expr='mf_net_amount_l>18000000',
output_left_data=False
)
m35 = M.select_columns.v3(
input_ds=m14.data,
columns='date,instrument',
reverse_select=False
)
m36 = M.join.v3(
data1=m18.data,
data2=m35.data,
on='date,instrument',
how='inner',
sort=False
)
m37 = M.filter.v3(
input_data=m36.data,
expr='cond4 and cond6 and cond7 and cond8',
output_left_data=False
)
m27 = M.dl_convert_to_bin.v2(
input_data=m37.data,
features=m38.data_1,
window_size=2,
feature_clip=2,
flatten=True,
window_along_col='instrument'
)
m8 = M.cached.v3(
input_1=m27.data,
input_2=m38.data_1,
run=m8_run_bigquant_run,
post_run=m8_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m6 = M.dl_layer_input.v1(
shape='23,2',
batch_shape='',
dtype='float32',
sparse=False,
name=''
)
m10 = M.dl_layer_conv1d.v1(
inputs=m6.data,
filters=32,
kernel_size='5',
strides='1',
padding='valid',
dilation_rate=1,
activation='relu',
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='Zeros',
kernel_regularizer='None',
kernel_regularizer_l1=0,
kernel_regularizer_l2=0,
bias_regularizer='None',
bias_regularizer_l1=0,
bias_regularizer_l2=0,
activity_regularizer='None',
activity_regularizer_l1=0,
activity_regularizer_l2=0,
kernel_constraint='None',
bias_constraint='None',
name=''
)
m12 = M.dl_layer_maxpooling1d.v1(
inputs=m10.data,
pool_size=1,
padding='valid',
name=''
)
m32 = M.dl_layer_conv1d.v1(
inputs=m12.data,
filters=32,
kernel_size='3',
strides='1',
padding='valid',
dilation_rate=1,
activation='relu',
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='Zeros',
kernel_regularizer='None',
kernel_regularizer_l1=0,
kernel_regularizer_l2=0,
bias_regularizer='None',
bias_regularizer_l1=0,
bias_regularizer_l2=0,
activity_regularizer='None',
activity_regularizer_l1=0,
activity_regularizer_l2=0,
kernel_constraint='None',
bias_constraint='None',
name=''
)
m33 = M.dl_layer_maxpooling1d.v1(
inputs=m32.data,
pool_size=1,
padding='valid',
name=''
)
m28 = M.dl_layer_globalmaxpooling1d.v1(
inputs=m33.data,
name=''
)
m30 = M.dl_layer_dense.v1(
inputs=m28.data,
units=1,
activation='linear',
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='Zeros',
kernel_regularizer='None',
kernel_regularizer_l1=0,
kernel_regularizer_l2=0,
bias_regularizer='None',
bias_regularizer_l1=0,
bias_regularizer_l2=0,
activity_regularizer='None',
activity_regularizer_l1=0,
activity_regularizer_l2=0,
kernel_constraint='None',
bias_constraint='None',
name=''
)
m34 = M.dl_model_init.v1(
inputs=m6.data,
outputs=m30.data
)
m5 = M.dl_model_train.v1(
input_model=m34.data,
training_data=m4.data_1,
optimizer='RMSprop',
loss='mean_squared_error',
metrics='mae',
batch_size=10240,
epochs=5,
custom_objects=m5_custom_objects_bigquant_run,
n_gpus=0,
verbose='2:每个epoch输出一行记录'
)
m11 = M.dl_model_predict.v1(
trained_model=m5.data,
input_data=m8.data_1,
batch_size=1024,
n_gpus=0,
verbose='2:每个epoch输出一行记录'
)
m24 = M.cached.v3(
input_1=m11.data,
input_2=m37.data,
run=m24_run_bigquant_run,
post_run=m24_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m44 = M.input_features.v1(
features="""
# #号开始的表示注释,注释需单独一行
# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
#bm_0 = where(close/shift(close,5)-1<-0.05,1,0)
bm_0=where(ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4)<0,1,0)"""
)
m43 = M.index_feature_extract.v3(
input_1=m9.data,
input_2=m44.data,
before_days=100,
index='000001.HIX'
)
m42 = M.select_columns.v3(
input_ds=m43.data_1,
columns='date,bm_0',
reverse_select=False
)
m41 = M.join.v3(
data1=m24.data_1,
data2=m42.data,
on='date',
how='left',
sort=False
)
m40 = M.sort.v4(
input_ds=m41.data,
sort_by='pred_label',
group_by='date',
keep_columns='--',
ascending=False
)
m39 = M.trade.v4(
instruments=m9.data,
options_data=m40.sorted_data,
start_date='',
end_date='',
initialize=m39_initialize_bigquant_run,
handle_data=m39_handle_data_bigquant_run,
prepare=m39_prepare_bigquant_run,
before_trading_start=m39_before_trading_start_bigquant_run,
volume_limit=0,
order_price_field_buy='open',
order_price_field_sell='close',
capital_base=100000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='真实价格',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.SHA'
)
[2022-02-26 15:13:27.708341] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-02-26 15:13:27.728300] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:27.730128] INFO: moduleinvoker: instruments.v2 运行完成[0.02181s].
[2022-02-26 15:13:27.739659] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-02-26 15:13:27.757088] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:27.758953] INFO: moduleinvoker: use_datasource.v1 运行完成[0.019282s].
[2022-02-26 15:13:27.771216] INFO: moduleinvoker: filter.v3 开始运行..
[2022-02-26 15:13:27.784245] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:27.786100] INFO: moduleinvoker: filter.v3 运行完成[0.014885s].
[2022-02-26 15:13:27.914046] INFO: moduleinvoker: select_columns.v3 开始运行..
[2022-02-26 15:13:27.928403] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:27.930731] INFO: moduleinvoker: select_columns.v3 运行完成[0.016708s].
[2022-02-26 15:13:27.936889] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-02-26 15:13:27.953160] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:27.954923] INFO: moduleinvoker: use_datasource.v1 运行完成[0.018047s].
[2022-02-26 15:13:27.971737] INFO: moduleinvoker: join.v3 开始运行..
[2022-02-26 15:13:27.982182] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:27.983903] INFO: moduleinvoker: join.v3 运行完成[0.012172s].
[2022-02-26 15:13:27.996864] INFO: moduleinvoker: auto_labeler_on_datasource.v1 开始运行..
[2022-02-26 15:13:28.023544] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:28.025370] INFO: moduleinvoker: auto_labeler_on_datasource.v1 运行完成[0.028506s].
[2022-02-26 15:13:28.045853] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-02-26 15:13:28.072491] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:28.074553] INFO: moduleinvoker: input_features.v1 运行完成[0.028715s].
[2022-02-26 15:13:28.080917] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-02-26 15:13:28.091073] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:28.092498] INFO: moduleinvoker: input_features.v1 运行完成[0.011582s].
[2022-02-26 15:13:28.114778] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-02-26 15:13:28.126518] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:28.128957] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.014197s].
[2022-02-26 15:13:28.145219] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-02-26 15:13:28.155987] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:28.157697] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.012467s].
[2022-02-26 15:13:28.168240] INFO: moduleinvoker: join.v3 开始运行..
[2022-02-26 15:13:28.187151] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:28.188943] INFO: moduleinvoker: join.v3 运行完成[0.020702s].
[2022-02-26 15:13:28.199141] INFO: moduleinvoker: filter.v3 开始运行..
[2022-02-26 15:13:28.206391] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:28.207907] INFO: moduleinvoker: filter.v3 运行完成[0.008767s].
[2022-02-26 15:13:28.232470] INFO: moduleinvoker: features_short.v1 开始运行..
[2022-02-26 15:13:28.240603] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:28.242298] INFO: moduleinvoker: features_short.v1 运行完成[0.009846s].
[2022-02-26 15:13:28.271755] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-02-26 15:13:28.285910] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:28.288241] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.016568s].
[2022-02-26 15:13:28.308018] INFO: moduleinvoker: cached.v3 开始运行..
[2022-02-26 15:13:29.941414] INFO: moduleinvoker: cached.v3 运行完成[1.6334s].
[2022-02-26 15:13:29.950167] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-02-26 15:13:29.958546] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:29.960092] INFO: moduleinvoker: instruments.v2 运行完成[0.009932s].
[2022-02-26 15:13:29.972982] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-02-26 15:13:29.982623] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:29.984070] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.011102s].
[2022-02-26 15:13:29.991071] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-02-26 15:13:30.000249] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:30.001791] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010719s].
[2022-02-26 15:13:30.008003] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-02-26 15:13:30.017962] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:30.019438] INFO: moduleinvoker: use_datasource.v1 运行完成[0.011443s].
[2022-02-26 15:13:30.027411] INFO: moduleinvoker: filter.v3 开始运行..
[2022-02-26 15:13:30.038920] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:30.040959] INFO: moduleinvoker: filter.v3 运行完成[0.01354s].
[2022-02-26 15:13:30.051181] INFO: moduleinvoker: select_columns.v3 开始运行..
[2022-02-26 15:13:30.067154] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:30.068853] INFO: moduleinvoker: select_columns.v3 运行完成[0.017673s].
[2022-02-26 15:13:30.076256] INFO: moduleinvoker: join.v3 开始运行..
[2022-02-26 15:13:30.085552] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:30.086804] INFO: moduleinvoker: join.v3 运行完成[0.010544s].
[2022-02-26 15:13:30.131866] INFO: moduleinvoker: filter.v3 开始运行..
[2022-02-26 15:13:30.146510] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:30.148983] INFO: moduleinvoker: filter.v3 运行完成[0.017108s].
[2022-02-26 15:13:30.163427] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-02-26 15:13:30.172018] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:30.173507] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.01009s].
[2022-02-26 15:13:30.185765] INFO: moduleinvoker: cached.v3 开始运行..
[2022-02-26 15:13:30.255516] INFO: moduleinvoker: cached.v3 运行完成[0.069742s].
[2022-02-26 15:13:36.403095] INFO: moduleinvoker: dl_layer_input.v1 运行完成[6.134512s].
[2022-02-26 15:13:37.151270] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.732909s].
[2022-02-26 15:13:37.176468] INFO: moduleinvoker: dl_layer_maxpooling1d.v1 运行完成[0.010024s].
[2022-02-26 15:13:37.203502] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.016643s].
[2022-02-26 15:13:37.285164] INFO: moduleinvoker: dl_layer_maxpooling1d.v1 运行完成[0.009048s].
[2022-02-26 15:13:37.302084] INFO: moduleinvoker: dl_layer_globalmaxpooling1d.v1 运行完成[0.006847s].
[2022-02-26 15:13:37.323933] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.01126s].
[2022-02-26 15:13:37.372652] INFO: moduleinvoker: cached.v3 开始运行..
[2022-02-26 15:13:37.385306] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:13:37.387676] INFO: moduleinvoker: cached.v3 运行完成[0.015037s].
[2022-02-26 15:13:37.392051] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.059164s].
[2022-02-26 15:13:37.407707] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2022-02-26 15:13:38.285993] INFO: dl_model_train: 准备训练,训练样本个数:38080,迭代次数:5
[2022-02-26 15:15:00.541173] INFO: dl_model_train: 训练结束,耗时:82.25s
[2022-02-26 15:15:00.571531] INFO: moduleinvoker: dl_model_train.v1 运行完成[83.16382s].
[2022-02-26 15:15:00.582077] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2022-02-26 15:15:01.598914] INFO: moduleinvoker: dl_model_predict.v1 运行完成[1.016841s].
[2022-02-26 15:15:01.614839] INFO: moduleinvoker: cached.v3 开始运行..
[2022-02-26 15:15:02.523605] INFO: moduleinvoker: cached.v3 运行完成[0.908773s].
[2022-02-26 15:15:02.530450] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-02-26 15:15:03.593209] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:15:03.595651] INFO: moduleinvoker: input_features.v1 运行完成[1.065209s].
[2022-02-26 15:15:03.646074] INFO: moduleinvoker: index_feature_extract.v3 开始运行..
[2022-02-26 15:15:03.664876] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:15:03.666241] INFO: moduleinvoker: index_feature_extract.v3 运行完成[0.020185s].
[2022-02-26 15:15:03.681511] INFO: moduleinvoker: select_columns.v3 开始运行..
[2022-02-26 15:15:03.691276] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:15:03.693376] INFO: moduleinvoker: select_columns.v3 运行完成[0.011871s].
[2022-02-26 15:15:03.720961] INFO: moduleinvoker: join.v3 开始运行..
[2022-02-26 15:15:03.988200] INFO: join: /data, 行数=9467/9467, 耗时=0.132818s
[2022-02-26 15:15:04.017770] INFO: join: 最终行数: 9467
[2022-02-26 15:15:04.025840] INFO: moduleinvoker: join.v3 运行完成[0.30487s].
[2022-02-26 15:15:04.037263] INFO: moduleinvoker: sort.v4 开始运行..
[2022-02-26 15:15:05.249467] INFO: moduleinvoker: sort.v4 运行完成[1.212185s].
[2022-02-26 15:15:09.962644] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-02-26 15:15:09.969027] INFO: backtest: biglearning backtest:V8.6.1
[2022-02-26 15:16:58.274774] INFO: backtest: product_type:stock by specified
[2022-02-26 15:16:58.609062] INFO: moduleinvoker: cached.v2 开始运行..
[2022-02-26 15:16:58.619617] INFO: moduleinvoker: 命中缓存
[2022-02-26 15:16:58.622134] INFO: moduleinvoker: cached.v2 运行完成[0.0131s].
[2022-02-26 15:20:58.634596] INFO: algo: TradingAlgorithm V1.8.7
[2022-02-26 15:21:12.125352] INFO: algo: trading transform...
[2022-02-26 15:21:20.989132] INFO: algo: handle_splits get splits [dt:2020-09-21 00:00:00+00:00] [asset:Equity(4058 [601238.SHA]), ratio:0.9972401261329651]
[2022-02-26 15:21:20.990741] INFO: Position: position stock handle split[sid:4058, orig_amount:1000, new_amount:1002.0, orig_cost:10.859999656677246, new_cost:10.83, ratio:0.9972401261329651, last_sale_price:10.839999198913574]
[2022-02-26 15:21:20.992164] INFO: Position: after split: PositionStock(asset:Equity(4058 [601238.SHA]), amount:1002.0, cost_basis:10.83, last_sale_price:10.869998931884766)
[2022-02-26 15:21:20.993486] INFO: Position: returning cash: 8.3198
[2022-02-26 15:21:22.519905] INFO: algo: handle_splits get splits [dt:2021-06-16 00:00:00+00:00] [asset:Equity(587 [002201.SZA]), ratio:0.7138569355010986]
[2022-02-26 15:21:22.521695] INFO: Position: position stock handle split[sid:587, orig_amount:16300, new_amount:22833.0, orig_cost:19.299999237060547, new_cost:13.7774, ratio:0.7138569355010986, last_sale_price:14.269999504089355]
[2022-02-26 15:21:22.522926] INFO: Position: after split: PositionStock(asset:Equity(587 [002201.SZA]), amount:22833.0, cost_basis:13.7774, last_sale_price:19.989999771118164)
[2022-02-26 15:21:22.523963] INFO: Position: returning cash: 10.0868
[2022-02-26 15:21:23.518847] INFO: Performance: Simulated 522 trading days out of 522.
[2022-02-26 15:21:23.520526] INFO: Performance: first open: 2019-10-30 09:30:00+00:00
[2022-02-26 15:21:23.522041] INFO: Performance: last close: 2021-12-20 15:00:00+00:00
[2022-02-26 15:21:30.642637] INFO: moduleinvoker: backtest.v8 运行完成[380.679997s].
[2022-02-26 15:21:30.644583] INFO: moduleinvoker: trade.v4 运行完成[385.376953s].
pd.DataFrame([DataSource(m5.data.id).read()]).to_pickle('/home/bigquant/work/userlib/model.csv')
m31