{"Description":"实验创建于2017/11/15","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-449:options_data","SourceOutputPortId":"-214:data_1"},{"DestinationInputPortId":"-316:inputs","SourceOutputPortId":"-210:data"},{"DestinationInputPortId":"-403:inputs","SourceOutputPortId":"-210:data"},{"DestinationInputPortId":"-14834:inputs","SourceOutputPortId":"-218:data"},{"DestinationInputPortId":"-320:input_model","SourceOutputPortId":"-316:data"},{"DestinationInputPortId":"-332:trained_model","SourceOutputPortId":"-320:data"},{"DestinationInputPortId":"-214:input_1","SourceOutputPortId":"-332:data"},{"DestinationInputPortId":"-421:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-430:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-438:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-316:outputs","SourceOutputPortId":"-259:data"},{"DestinationInputPortId":"-14841:inputs","SourceOutputPortId":"-14806:data"},{"DestinationInputPortId":"-14806:inputs","SourceOutputPortId":"-14834:data"},{"DestinationInputPortId":"-259:inputs","SourceOutputPortId":"-14841:data"},{"DestinationInputPortId":"-408:inputs","SourceOutputPortId":"-403:data"},{"DestinationInputPortId":"-446:inputs","SourceOutputPortId":"-408:data"},{"DestinationInputPortId":"-218:inputs","SourceOutputPortId":"-446:data"},{"DestinationInputPortId":"-2290:data1","SourceOutputPortId":"-1966:data_1"},{"DestinationInputPortId":"-2296:input_data","SourceOutputPortId":"-2290:data"},{"DestinationInputPortId":"-2300:input_data","SourceOutputPortId":"-2296:data"},{"DestinationInputPortId":"-2306:input_data","SourceOutputPortId":"-2296:data"},{"DestinationInputPortId":"-430:input_data","SourceOutputPortId":"-2300:data"},{"DestinationInputPortId":"-214:input_3","SourceOutputPortId":"-2306:data"},{"DestinationInputPortId":"-438:input_data","SourceOutputPortId":"-2306:data"},{"DestinationInputPortId":"-1966:input_1","SourceOutputPortId":"-616:data_1"},{"DestinationInputPortId":"-421:input_data","SourceOutputPortId":"-616:data_1"},{"DestinationInputPortId":"-616:input_1","SourceOutputPortId":"-620:data"},{"DestinationInputPortId":"-449:instruments","SourceOutputPortId":"-620:data"},{"DestinationInputPortId":"-2290:data2","SourceOutputPortId":"-421:data"},{"DestinationInputPortId":"-320:training_data","SourceOutputPortId":"-430:data"},{"DestinationInputPortId":"-332:input_data","SourceOutputPortId":"-438:data"},{"DestinationInputPortId":"-214:input_2","SourceOutputPortId":"-438:data"}],"ModuleNodes":[{"Id":"-214","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n input_series = input_1\n input_df = input_2\n test_data = input_df.read_pickle()\n pred_label = input_series.read_pickle()\n \n pred_result = pred_label.reshape(pred_label.shape[0]) \n dt = input_3.read_df()['date'][-1*len(pred_result):]\n pred_df = pd.Series(pred_result, index=dt)\n ds = DataSource.write_df(pred_df)\n \n pred_label = np.where(pred_label>0.5,1,0)\n labels = test_data['y']\n print('准确率%s'%(np.mean(pred_label==labels)))\n \n return Outputs(data_1=ds)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-214"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-214"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-214"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-214","OutputType":null},{"Name":"data_2","NodeId":"-214","OutputType":null},{"Name":"data_3","NodeId":"-214","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"模型预测结果输出","CommentCollapsed":false},{"Id":"-210","ModuleId":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","ModuleParameters":[{"Name":"shape","Value":"50,5","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dtype","Value":"float32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sparse","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-210"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-210","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true},{"Id":"-218","ModuleId":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","ModuleParameters":[{"Name":"units","Value":"32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_activation","Value":"hard_sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_initializer","Value":"Orthogonal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Ones","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"unit_forget_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dropout","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_dropout","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"return_sequences","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"implementation","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-218"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-218","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true},{"Id":"-316","ModuleId":"BigQuantSpace.dl_model_init.dl_model_init-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-316"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"outputs","NodeId":"-316"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-316","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":5,"Comment":"","CommentCollapsed":true},{"Id":"-320","ModuleId":"BigQuantSpace.dl_model_train.dl_model_train-v1","ModuleParameters":[{"Name":"optimizer","Value":"Adam","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_optimizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"loss","Value":"binary_crossentropy","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_loss","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"metrics","Value":"accuracy","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_size","Value":"2048","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"epochs","Value":"10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"1:输出进度条记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_model","NodeId":"-320"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_data","NodeId":"-320"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"validation_data","NodeId":"-320"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-320","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"Comment":"","CommentCollapsed":true},{"Id":"-332","ModuleId":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","ModuleParameters":[{"Name":"batch_size","Value":"10240","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":"2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"2:每个epoch输出一行记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trained_model","NodeId":"-332"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-332"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-332","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"Comment":"","CommentCollapsed":true},{"Id":"-2295","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"(close/shift(close,1)-1)*10\n(high/shift(high,1)-1)*10\n(low/shift(low,1)-1)*10\n(open/shift(open,1)-1)*10\n(volume/shift(volume,1)-1)*10","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-2295"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2295","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"Comment":"","CommentCollapsed":true},{"Id":"-259","ModuleId":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","ModuleParameters":[{"Name":"units","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-259"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-259","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":9,"Comment":"","CommentCollapsed":true},{"Id":"-14806","ModuleId":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","ModuleParameters":[{"Name":"units","Value":"32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-14806"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-14806","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":10,"Comment":"","CommentCollapsed":true},{"Id":"-14834","ModuleId":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","ModuleParameters":[{"Name":"rate","Value":"0.2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"noise_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"seed","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-14834"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-14834","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":11,"Comment":"","CommentCollapsed":true},{"Id":"-14841","ModuleId":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","ModuleParameters":[{"Name":"rate","Value":"0.2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"noise_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"seed","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-14841"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-14841","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":12,"Comment":"","CommentCollapsed":true},{"Id":"-403","ModuleId":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","ModuleParameters":[{"Name":"target_shape","Value":"50,5,1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-403"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-403","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":13,"Comment":"","CommentCollapsed":true},{"Id":"-408","ModuleId":"BigQuantSpace.dl_layer_conv2d.dl_layer_conv2d-v1","ModuleParameters":[{"Name":"filters","Value":"32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_size","Value":"3,5","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"strides","Value":"1,1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"padding","Value":"valid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_format","Value":"channels_last","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dilation_rate","Value":"1,1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"relu","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-408"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-408","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":14,"Comment":"","CommentCollapsed":true},{"Id":"-446","ModuleId":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","ModuleParameters":[{"Name":"target_shape","Value":"48,32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-446"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-446","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":15,"Comment":"","CommentCollapsed":true},{"Id":"-1966","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n input_ds = input_1\n df = input_ds.read_df()\n df['return'] = (df.close.shift(-10)/df.close - 1)\n df['label'] = np.where(df['return'] > 0, 1, 0)\n ds = DataSource.write_df(df)\n return Outputs(data_1=ds)\n\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-1966"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-1966"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-1966"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-1966","OutputType":null},{"Name":"data_2","NodeId":"-1966","OutputType":null},{"Name":"data_3","NodeId":"-1966","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"Comment":"数据标注","CommentCollapsed":false},{"Id":"-2290","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-2290"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-2290"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2290","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"Comment":"标注特征连接","CommentCollapsed":false},{"Id":"-2296","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-2296"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2296","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":19,"Comment":"去掉为nan的数据","CommentCollapsed":true},{"Id":"-2300","ModuleId":"BigQuantSpace.filter.filter-v3","ModuleParameters":[{"Name":"expr","Value":"date<'2017-03-01'","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-2300"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2300","OutputType":null},{"Name":"left_data","NodeId":"-2300","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"Comment":"训练数据","CommentCollapsed":false},{"Id":"-2306","ModuleId":"BigQuantSpace.filter.filter-v3","ModuleParameters":[{"Name":"expr","Value":"date>'2017-03-01'","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-2306"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2306","OutputType":null},{"Name":"left_data","NodeId":"-2306","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"Comment":"测试数据","CommentCollapsed":false},{"Id":"-616","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n fields = ['open','high','low','close','volume']\n input_1_df = input_1.read_pickle()\n ins = input_1_df['instruments']\n start_date = input_1_df['start_date']\n end_date = input_1_df['end_date']\n df = D.history_data(ins, start_date, end_date, fields) \n data_1 = DataSource.write_df(df)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-616"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-616"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-616"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-616","OutputType":null},{"Name":"data_2","NodeId":"-616","OutputType":null},{"Name":"data_3","NodeId":"-616","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":24,"Comment":"获取基本数据","CommentCollapsed":false},{"Id":"-620","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-02-07","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"600009.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-620"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-620","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":25,"Comment":"证券标的及起始截止时间","CommentCollapsed":false},{"Id":"-421","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-421"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-421"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-421","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"Comment":"计算需要使用的特征","CommentCollapsed":false},{"Id":"-430","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"50","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":5,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-430"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-430"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-430","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":27,"Comment":"","CommentCollapsed":true},{"Id":"-438","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"50","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":5,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-438"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-438"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-438","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":28,"Comment":"","CommentCollapsed":true},{"Id":"-449","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"2017-04-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n try:\n prediction = context.prediction[data.current_dt.strftime('%Y-%m-%d')]\n except KeyError as e:\n return\n\n \n \n instrument = context.instruments[0]\n sid = context.symbol(instrument)\n cur_position = context.portfolio.positions[sid].amount\n #print('date: ',data.current_dt, '持仓: ', cur_position)\n \n # 交易逻辑\n if prediction > 0.5 and cur_position == 0:\n context.order_target_percent(context.symbol(instrument), 1)\n print(data.current_dt, '买入!')\n \n elif prediction < 0.5 and cur_position > 0:\n context.order_target_percent(context.symbol(instrument), 0)\n print(data.current_dt, '卖出!')\n ","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-449"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-449"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-449"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-449"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-449"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-449","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":29,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-214' Position='791,762,200,200'/><NodePosition Node='-210' Position='-20,-318.8592987060547,200,200'/><NodePosition Node='-218' Position='280,67,200,200'/><NodePosition Node='-316' Position='89,485,200,200'/><NodePosition Node='-320' Position='332,582,200,200'/><NodePosition Node='-332' Position='554,692,200,200'/><NodePosition Node='-2295' Position='1054,-338,200,200'/><NodePosition Node='-259' Position='281,387,200,200'/><NodePosition Node='-14806' Position='279,213,200,200'/><NodePosition Node='-14834' Position='279,146,200,200'/><NodePosition Node='-14841' Position='280,301,200,200'/><NodePosition Node='-403' Position='279,-194,200,200'/><NodePosition Node='-408' Position='280,-106,200,200'/><NodePosition Node='-446' Position='280,-23,200,200'/><NodePosition Node='-1966' Position='715,-224,200,200'/><NodePosition Node='-2290' Position='710,-72,200,200'/><NodePosition Node='-2296' Position='710,52,200,200'/><NodePosition Node='-2300' Position='707,211,200,200'/><NodePosition Node='-2306' Position='1057,212,200,200'/><NodePosition Node='-616' Position='717,-345,200,200'/><NodePosition Node='-620' Position='431,-439,200,200'/><NodePosition Node='-421' Position='1045,-226,200,200'/><NodePosition Node='-430' Position='710,373,200,200'/><NodePosition Node='-438' Position='1060,372,200,200'/><NodePosition Node='-449' Position='976,893,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2020-02-28 09:18:54.528724] INFO: bigquant: dl_layer_input.v1 运行完成[0.003536s].
[2020-02-28 09:18:54.547210] INFO: bigquant: dl_layer_reshape.v1 运行完成[0.0154s].
[2020-02-28 09:18:54.574590] INFO: bigquant: dl_layer_conv2d.v1 运行完成[0.0206s].
[2020-02-28 09:18:54.591438] INFO: bigquant: dl_layer_reshape.v1 运行完成[0.013799s].
[2020-02-28 09:18:54.910879] INFO: bigquant: dl_layer_lstm.v1 运行完成[0.316033s].
[2020-02-28 09:18:54.948990] INFO: bigquant: dl_layer_dropout.v1 运行完成[0.035651s].
[2020-02-28 09:18:54.973678] INFO: bigquant: dl_layer_dense.v1 运行完成[0.020963s].
[2020-02-28 09:18:55.018405] INFO: bigquant: dl_layer_dropout.v1 运行完成[0.042228s].
[2020-02-28 09:18:55.040589] INFO: bigquant: dl_layer_dense.v1 运行完成[0.018656s].
[2020-02-28 09:18:55.069337] INFO: bigquant: cached.v3 开始运行..
[2020-02-28 09:18:55.186916] INFO: bigquant: cached.v3 运行完成[0.11758s].
[2020-02-28 09:18:55.188841] INFO: bigquant: dl_model_init.v1 运行完成[0.145496s].
[2020-02-28 09:18:55.191837] INFO: bigquant: input_features.v1 开始运行..
[2020-02-28 09:18:55.240015] INFO: bigquant: 命中缓存
[2020-02-28 09:18:55.242651] INFO: bigquant: input_features.v1 运行完成[0.050786s].
[2020-02-28 09:18:55.245912] INFO: bigquant: instruments.v2 开始运行..
[2020-02-28 09:18:55.304140] INFO: bigquant: 命中缓存
[2020-02-28 09:18:55.305916] INFO: bigquant: instruments.v2 运行完成[0.059989s].
[2020-02-28 09:18:55.310426] INFO: bigquant: cached.v3 开始运行..
[2020-02-28 09:18:55.383621] INFO: bigquant: 命中缓存
[2020-02-28 09:18:55.385383] INFO: bigquant: cached.v3 运行完成[0.074954s].
[2020-02-28 09:18:55.388902] INFO: bigquant: cached.v3 开始运行..
[2020-02-28 09:18:55.464518] INFO: bigquant: 命中缓存
[2020-02-28 09:18:55.466362] INFO: bigquant: cached.v3 运行完成[0.077448s].
[2020-02-28 09:18:55.468879] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2020-02-28 09:18:55.509595] INFO: bigquant: 命中缓存
[2020-02-28 09:18:55.511694] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.042803s].
[2020-02-28 09:18:55.514626] INFO: bigquant: join.v3 开始运行..
[2020-02-28 09:18:55.561108] INFO: bigquant: 命中缓存
[2020-02-28 09:18:55.563634] INFO: bigquant: join.v3 运行完成[0.048985s].
[2020-02-28 09:18:55.567879] INFO: bigquant: dropnan.v1 开始运行..
[2020-02-28 09:18:55.611799] INFO: bigquant: 命中缓存
[2020-02-28 09:18:55.613558] INFO: bigquant: dropnan.v1 运行完成[0.045681s].
[2020-02-28 09:18:55.616112] INFO: bigquant: filter.v3 开始运行..
[2020-02-28 09:18:55.662425] INFO: bigquant: 命中缓存
[2020-02-28 09:18:55.664379] INFO: bigquant: filter.v3 运行完成[0.048262s].
[2020-02-28 09:18:55.705850] INFO: bigquant: dl_convert_to_bin.v2 开始运行..
[2020-02-28 09:18:56.171083] INFO: bigquant: dl_convert_to_bin.v2 运行完成[0.465224s].
[2020-02-28 09:18:56.174539] INFO: bigquant: dl_model_train.v1 开始运行..
[2020-02-28 09:18:57.592991] INFO: dl_model_train: 准备训练,训练样本个数:523,迭代次数:10
[2020-02-28 09:19:12.132575] INFO: dl_model_train: 训练结束,耗时:14.54s
[2020-02-28 09:19:12.352700] INFO: bigquant: dl_model_train.v1 运行完成[16.178163s].
[2020-02-28 09:19:12.356029] INFO: bigquant: filter.v3 开始运行..
[2020-02-28 09:19:12.471868] INFO: filter: 使用表达式 date>'2017-03-01' 过滤
[2020-02-28 09:19:12.586971] INFO: filter: 过滤 /data, 224/0/748
[2020-02-28 09:19:12.684508] INFO: bigquant: filter.v3 运行完成[0.328462s].
[2020-02-28 09:19:12.722692] INFO: bigquant: dl_convert_to_bin.v2 开始运行..
[2020-02-28 09:19:13.016660] INFO: bigquant: dl_convert_to_bin.v2 运行完成[0.29397s].
[2020-02-28 09:19:13.025154] INFO: bigquant: dl_model_predict.v1 开始运行..
[2020-02-28 09:19:14.327365] INFO: device_manager: 没有gpu资源,将使用cpu计算
[2020-02-28 09:19:14.332116] INFO: device_manager: 本次操作不使用GPU
[2020-02-28 09:19:15.015724] INFO: bigquant: dl_model_predict.v1 运行完成[1.990562s].
[2020-02-28 09:19:15.023041] INFO: bigquant: cached.v3 开始运行..
[2020-02-28 09:19:15.683373] INFO: bigquant: cached.v3 运行完成[0.66032s].
[2020-02-28 09:19:17.467537] INFO: bigquant: backtest.v8 开始运行..
[2020-02-28 09:19:17.471485] INFO: bigquant: biglearning backtest:V8.3.2
[2020-02-28 09:19:17.473040] INFO: bigquant: product_type:stock by specified
[2020-02-28 09:19:17.777709] INFO: bigquant: cached.v2 开始运行..
[2020-02-28 09:19:28.389830] INFO: bigquant: 读取股票行情完成:456
[2020-02-28 09:19:29.220944] INFO: bigquant: cached.v2 运行完成[11.443253s].
[2020-02-28 09:19:29.279800] INFO: algo: TradingAlgorithm V1.6.5
[2020-02-28 09:19:29.356952] INFO: algo: trading transform...
[2020-02-28 09:19:29.609371] INFO: algo: handle_splits get splits [dt:2017-08-24 00:00:00+00:00] [asset:Equity(0 [600009.SHA]), ratio:0.9882099126332605]
[2020-02-28 09:19:29.611292] INFO: Position: position stock handle split[sid:0, orig_amount:33000, new_amount:33393.0, orig_cost:30.280028020664357, new_cost:29.92, ratio:0.9882099126332605, last_sale_price:36.87999363789555]
[2020-02-28 09:19:29.612533] INFO: Position: after split: PositionStock(asset:Equity(0 [600009.SHA]), amount:33393.0, cost_basis:29.92, last_sale_price:37.31999969482422)
[2020-02-28 09:19:29.618782] INFO: Position: returning cash: 26.36
[2020-02-28 09:19:29.906879] INFO: Performance: Simulated 212 trading days out of 212.
[2020-02-28 09:19:29.908462] INFO: Performance: first open: 2017-04-05 09:30:00+00:00
[2020-02-28 09:19:29.910045] INFO: Performance: last close: 2018-02-07 15:00:00+00:00
[2020-02-28 09:19:33.340547] INFO: bigquant: backtest.v8 运行完成[15.872986s].
[2020-02-28 09:19:33.343459] INFO: bigquant: trade.v4 运行完成[17.639216s].
Train on 523 samples
Epoch 1/10
523/523 [==============================] - 8s 15ms/sample - loss: 0.7726 - accuracy: 0.4551
Epoch 2/10
523/523 [==============================] - 1s 2ms/sample - loss: 0.7529 - accuracy: 0.4589
Epoch 3/10
523/523 [==============================] - 1s 2ms/sample - loss: 0.7388 - accuracy: 0.5067
Epoch 4/10
523/523 [==============================] - 1s 1ms/sample - loss: 0.7166 - accuracy: 0.4780
Epoch 5/10
523/523 [==============================] - 1s 2ms/sample - loss: 0.7286 - accuracy: 0.5182
Epoch 6/10
523/523 [==============================] - 1s 2ms/sample - loss: 0.7243 - accuracy: 0.5143
Epoch 7/10
523/523 [==============================] - 1s 1ms/sample - loss: 0.7026 - accuracy: 0.5564
Epoch 8/10
523/523 [==============================] - 1s 1ms/sample - loss: 0.7166 - accuracy: 0.5488
Epoch 9/10
523/523 [==============================] - 1s 1ms/sample - loss: 0.7139 - accuracy: 0.5698
Epoch 10/10
523/523 [==============================] - 1s 1ms/sample - loss: 0.7125 - accuracy: 0.5621
224/224 - 0s
DataSource(2721d381a86742458ec4a4140c9aad11T, v3)
2017-04-05 15:00:00+00:00 买入!
- 收益率59.37%
- 年化收益率74.01%
- 基准收益率17.2%
- 阿尔法0.46
- 贝塔0.69
- 夏普比率1.86
- 胜率1.0
- 盈亏比0.0
- 收益波动率30.65%
- 信息比率0.09
- 最大回撤11.53%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-0cbb7c0c5c1143b0aa993794889433df"}/bigcharts-data-end