{"description":"实验创建于2022/11/5","graph":{"edges":[{"to_node_id":"-24:instruments","from_node_id":"-4:data"},{"to_node_id":"-35:instruments","from_node_id":"-4:data"},{"to_node_id":"-35:features","from_node_id":"-12:data"},{"to_node_id":"-62:features","from_node_id":"-12:data"},{"to_node_id":"-69:features","from_node_id":"-12:data"},{"to_node_id":"-42:features","from_node_id":"-12:data"},{"to_node_id":"-166:features","from_node_id":"-12:data"},{"to_node_id":"-62:instruments","from_node_id":"-16:data"},{"to_node_id":"-117:instruments","from_node_id":"-16:data"},{"to_node_id":"-51:data1","from_node_id":"-24:data"},{"to_node_id":"-42:input_data","from_node_id":"-35:data"},{"to_node_id":"-51:data2","from_node_id":"-42:data"},{"to_node_id":"-58:input_data","from_node_id":"-51:data"},{"to_node_id":"-166:training_ds","from_node_id":"-58:data"},{"to_node_id":"-69:input_data","from_node_id":"-62:data"},{"to_node_id":"-78:input_data","from_node_id":"-69:data"},{"to_node_id":"-166:predict_ds","from_node_id":"-78:data"},{"to_node_id":"-117:options_data","from_node_id":"-166:predictions"}],"nodes":[{"node_id":"-4","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2011-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-4"}],"output_ports":[{"name":"data","node_id":"-4"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-12","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-12"}],"output_ports":[{"name":"data","node_id":"-12"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-16","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-16"}],"output_ports":[{"name":"data","node_id":"-16"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-24","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n# shift(close, -5) / shift(open, -1)\nwhere(shift(close,-5) / shift(open,-1)>1,1,0)\n\n# 极值处理:用1%和99%分位的值做clip\n# clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n# all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-24"}],"output_ports":[{"name":"data","node_id":"-24"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-35","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-35"},{"name":"features","node_id":"-35"}],"output_ports":[{"name":"data","node_id":"-35"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-42","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-42"},{"name":"features","node_id":"-42"}],"output_ports":[{"name":"data","node_id":"-42"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-51","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-51"},{"name":"data2","node_id":"-51"}],"output_ports":[{"name":"data","node_id":"-51"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-58","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-58"},{"name":"features","node_id":"-58"}],"output_ports":[{"name":"data","node_id":"-58"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-62","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-62"},{"name":"features","node_id":"-62"}],"output_ports":[{"name":"data","node_id":"-62"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-69","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-69"},{"name":"features","node_id":"-69"}],"output_ports":[{"name":"data","node_id":"-69"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-78","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-78"},{"name":"features","node_id":"-78"}],"output_ports":[{"name":"data","node_id":"-78"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-117","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n# context.ranker_prediction = context.options['data'].read_df()\n context.ranker_prediction = context.options['data'].read_df().sort_values('classes_prob_1.0', ascending=False)\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-117"},{"name":"options_data","node_id":"-117"},{"name":"history_ds","node_id":"-117"},{"name":"benchmark_ds","node_id":"-117"},{"name":"trading_calendar","node_id":"-117"}],"output_ports":[{"name":"raw_perf","node_id":"-117"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-166","module_id":"BigQuantSpace.mlp_classifier.mlp_classifier-v1","parameters":[{"name":"hidden_layer_sizes","value":"10","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"solver","value":"adam","type":"Literal","bound_global_parameter":null},{"name":"alpha","value":0.0001,"type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":200,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate_init","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"max_iter","value":200,"type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-166"},{"name":"features","node_id":"-166"},{"name":"model","node_id":"-166"},{"name":"predict_ds","node_id":"-166"}],"output_ports":[{"name":"output_model","node_id":"-166"},{"name":"predictions","node_id":"-166"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-4' Position='86.08929443359375,88.21427917480469,200,200'/><node_position Node='-12' Position='387.00006103515625,5.767852783203125,200,200'/><node_position Node='-16' Position='704,86,200,200'/><node_position Node='-24' Position='73,182,200,200'/><node_position Node='-35' Position='380,181,200,200'/><node_position Node='-42' Position='399,311,200,200'/><node_position Node='-51' Position='114,409,200,200'/><node_position Node='-58' Position='118,490,200,200'/><node_position Node='-62' Position='717,188,200,200'/><node_position Node='-69' Position='746,314,200,200'/><node_position Node='-78' Position='714,405,200,200'/><node_position Node='-117' Position='292.982177734375,724.5714111328125,200,200'/><node_position Node='-166' Position='313.6964111328125,600.0892333984375,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-11-08 14:06:24.990623] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-11-08 14:06:25.012077] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:25.016032] INFO: moduleinvoker: instruments.v2 运行完成[0.026045s].
[2022-11-08 14:06:25.031022] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-11-08 14:06:25.043959] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:25.047486] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.016435s].
[2022-11-08 14:06:25.054742] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-11-08 14:06:25.067988] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:25.074357] INFO: moduleinvoker: input_features.v1 运行完成[0.019663s].
[2022-11-08 14:06:25.105453] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-11-08 14:06:25.119750] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:25.122473] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.01704s].
[2022-11-08 14:06:25.134207] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-11-08 14:06:25.145128] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:25.147856] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.013643s].
[2022-11-08 14:06:25.168808] INFO: moduleinvoker: join.v3 开始运行..
[2022-11-08 14:06:25.183012] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:25.188790] INFO: moduleinvoker: join.v3 运行完成[0.019902s].
[2022-11-08 14:06:25.207464] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-11-08 14:06:25.220123] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:25.225336] INFO: moduleinvoker: dropnan.v2 运行完成[0.017871s].
[2022-11-08 14:06:25.242969] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-11-08 14:06:25.325531] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:25.327931] INFO: moduleinvoker: instruments.v2 运行完成[0.084982s].
[2022-11-08 14:06:25.507797] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-11-08 14:06:25.637846] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:25.640534] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.132807s].
[2022-11-08 14:06:25.675600] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-11-08 14:06:25.883879] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:25.886249] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.210657s].
[2022-11-08 14:06:25.924479] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-11-08 14:06:26.028895] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:26.031971] INFO: moduleinvoker: dropnan.v2 运行完成[0.107475s].
[2022-11-08 14:06:26.078915] INFO: moduleinvoker: mlp_classifier.v1 开始运行..
[2022-11-08 14:06:26.206375] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:26.210831] INFO: moduleinvoker: mlp_classifier.v1 运行完成[0.131781s].
[2022-11-08 14:06:26.357449] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-11-08 14:06:26.604002] INFO: backtest: biglearning backtest:V8.6.3
[2022-11-08 14:06:26.605715] INFO: backtest: product_type:stock by specified
[2022-11-08 14:06:26.912563] INFO: moduleinvoker: cached.v2 开始运行..
[2022-11-08 14:06:26.989384] INFO: moduleinvoker: 命中缓存
[2022-11-08 14:06:26.992008] INFO: moduleinvoker: cached.v2 运行完成[0.079459s].
[2022-11-08 14:06:43.050141] INFO: backtest: algo history_data=DataSource(e03d97b804eb43a69b4cf22925e1d215T)
[2022-11-08 14:06:43.052892] INFO: algo: TradingAlgorithm V1.8.8
[2022-11-08 14:06:47.193477] INFO: algo: trading transform...
[2022-11-08 14:06:50.310696] INFO: algo: handle_splits get splits [dt:2016-05-23 00:00:00+00:00] [asset:Equity(1203 [603703.SHA]), ratio:0.39774084091186523]
[2022-11-08 14:06:50.313207] INFO: Position: position stock handle split[sid:1203, orig_amount:600, new_amount:1508.0, orig_cost:64.98000341645474, new_cost:25.8452, ratio:0.39774084091186523, last_sale_price:26.7600040435791]
[2022-11-08 14:06:50.315922] INFO: Position: after split: PositionStock(asset:Equity(1203 [603703.SHA]), amount:1508.0, cost_basis:25.8452, last_sale_price:67.27999877929688)
[2022-11-08 14:06:50.318650] INFO: Position: returning cash: 13.9143
[2022-11-08 14:06:50.762393] INFO: algo: handle_splits get splits [dt:2016-06-16 00:00:00+00:00] [asset:Equity(3049 [603698.SHA]), ratio:0.9917076826095581]
[2022-11-08 14:06:50.764867] INFO: Position: position stock handle split[sid:3049, orig_amount:1400, new_amount:1411.0, orig_cost:25.610003273997204, new_cost:25.3976, ratio:0.9917076826095581, last_sale_price:26.31000518798828]
[2022-11-08 14:06:50.767535] INFO: Position: after split: PositionStock(asset:Equity(3049 [603698.SHA]), amount:1411.0, cost_basis:25.3976, last_sale_price:26.530000686645508)
[2022-11-08 14:06:50.769996] INFO: Position: returning cash: 18.5832
[2022-11-08 14:06:50.939760] INFO: algo: handle_splits get splits [dt:2016-06-24 00:00:00+00:00] [asset:Equity(3672 [603688.SHA]), ratio:0.9947177171707153]
[2022-11-08 14:06:50.942827] INFO: Position: position stock handle split[sid:3672, orig_amount:2700, new_amount:2714.0, orig_cost:19.2200026213262, new_cost:19.1185, ratio:0.9947177171707153, last_sale_price:18.830007553100586]
[2022-11-08 14:06:50.945611] INFO: Position: after split: PositionStock(asset:Equity(3672 [603688.SHA]), amount:2714.0, cost_basis:19.1185, last_sale_price:18.93000030517578)
[2022-11-08 14:06:50.948485] INFO: Position: returning cash: 6.3627
[2022-11-08 14:06:51.242822] INFO: algo: handle_splits get splits [dt:2016-07-08 00:00:00+00:00] [asset:Equity(2925 [603699.SHA]), ratio:0.9860337376594543]
[2022-11-08 14:06:51.246846] INFO: Position: position stock handle split[sid:2925, orig_amount:12400, new_amount:12575.0, orig_cost:17.82718415902479, new_cost:17.5782, ratio:0.9860337376594543, last_sale_price:17.65000343322754]
[2022-11-08 14:06:51.249982] INFO: Position: after split: PositionStock(asset:Equity(2925 [603699.SHA]), amount:12575.0, cost_basis:17.5782, last_sale_price:17.899999618530273)
[2022-11-08 14:06:51.252543] INFO: Position: returning cash: 11.2009
[2022-11-08 14:06:51.728046] INFO: algo: handle_splits get splits [dt:2016-07-29 00:00:00+00:00] [asset:Equity(3885 [603701.SHA]), ratio:0.9957828521728516]
[2022-11-08 14:06:51.737552] INFO: Position: position stock handle split[sid:3885, orig_amount:3100, new_amount:3113.0, orig_cost:76.22903275362324, new_cost:75.9076, ratio:0.9957828521728516, last_sale_price:66.11997985839844]
[2022-11-08 14:06:51.745444] INFO: Position: after split: PositionStock(asset:Equity(3885 [603701.SHA]), amount:3113.0, cost_basis:75.9076, last_sale_price:66.4000015258789)
[2022-11-08 14:06:51.753032] INFO: Position: returning cash: 8.498
[2022-11-08 14:06:57.169425] INFO: algo: handle_splits get splits [dt:2017-05-18 00:00:00+00:00] [asset:Equity(2598 [002547.SZA]), ratio:0.9954296946525574]
[2022-11-08 14:06:57.172150] INFO: Position: position stock handle split[sid:2598, orig_amount:4400, new_amount:4420.0, orig_cost:10.939999611230244, new_cost:10.89, ratio:0.9954296946525574, last_sale_price:10.890000343322754]
[2022-11-08 14:06:57.174979] INFO: Position: after split: PositionStock(asset:Equity(2598 [002547.SZA]), amount:4420.0, cost_basis:10.89, last_sale_price:10.9399995803833)
[2022-11-08 14:06:57.177448] INFO: Position: returning cash: 2.1962
[2022-11-08 14:06:57.289784] INFO: algo: handle_splits get splits [dt:2017-05-24 00:00:00+00:00] [asset:Equity(3486 [002553.SZA]), ratio:0.9808059930801392]
[2022-11-08 14:06:57.291998] INFO: Position: position stock handle split[sid:3486, orig_amount:17100, new_amount:17434.0, orig_cost:12.287840054636956, new_cost:12.052, ratio:0.9808059930801392, last_sale_price:10.219998359680176]
[2022-11-08 14:06:57.294046] INFO: Position: after split: PositionStock(asset:Equity(3486 [002553.SZA]), amount:17434.0, cost_basis:12.052, last_sale_price:10.420000076293945)
[2022-11-08 14:06:57.295936] INFO: Position: returning cash: 6.5471
[2022-11-08 14:06:57.409131] INFO: algo: handle_splits get splits [dt:2017-06-01 00:00:00+00:00] [asset:Equity(3957 [002550.SZA]), ratio:0.9866665601730347]
[2022-11-08 14:06:57.411939] INFO: Position: position stock handle split[sid:3957, orig_amount:6000, new_amount:6081.0, orig_cost:6.070001257230948, new_cost:5.9891, ratio:0.9866665601730347, last_sale_price:5.919999122619629]
[2022-11-08 14:06:57.413945] INFO: Position: after split: PositionStock(asset:Equity(3957 [002550.SZA]), amount:6081.0, cost_basis:5.9891, last_sale_price:6.0)
[2022-11-08 14:06:57.415972] INFO: Position: returning cash: 0.4839
[2022-11-08 14:06:57.615621] INFO: algo: handle_splits get splits [dt:2017-06-09 00:00:00+00:00] [asset:Equity(3762 [002548.SZA]), ratio:0.9883177280426025]
[2022-11-08 14:06:57.618247] INFO: Position: position stock handle split[sid:3762, orig_amount:3100, new_amount:3136.0, orig_cost:12.830003305584741, new_cost:12.6801, ratio:0.9883177280426025, last_sale_price:12.6899995803833]
[2022-11-08 14:06:57.621155] INFO: Position: after split: PositionStock(asset:Equity(3762 [002548.SZA]), amount:3136.0, cost_basis:12.6801, last_sale_price:12.84000015258789)
[2022-11-08 14:06:57.623274] INFO: Position: returning cash: 8.1612
[2022-11-08 14:06:58.185816] INFO: algo: handle_splits get splits [dt:2017-07-07 00:00:00+00:00] [asset:Equity(3477 [002551.SZA]), ratio:0.661980390548706]
[2022-11-08 14:06:58.188566] INFO: Position: position stock handle split[sid:3477, orig_amount:12200, new_amount:18429.0, orig_cost:19.714755773057586, new_cost:13.0508, ratio:0.661980390548706, last_sale_price:10.829999923706055]
[2022-11-08 14:06:58.190727] INFO: Position: after split: PositionStock(asset:Equity(3477 [002551.SZA]), amount:18429.0, cost_basis:13.0508, last_sale_price:16.360000610351562)
[2022-11-08 14:06:58.193388] INFO: Position: returning cash: 5.9449
[2022-11-08 14:07:01.761051] INFO: Performance: Simulated 488 trading days out of 488.
[2022-11-08 14:07:01.762964] INFO: Performance: first open: 2016-01-04 09:30:00+00:00
[2022-11-08 14:07:01.765081] INFO: Performance: last close: 2017-12-29 15:00:00+00:00
[2022-11-08 14:07:09.158446] INFO: moduleinvoker: backtest.v8 运行完成[42.801012s].
[2022-11-08 14:07:09.161030] INFO: moduleinvoker: trade.v4 运行完成[42.929686s].
- 收益率-16.94%
- 年化收益率-9.14%
- 基准收益率8.04%
- 阿尔法-0.12
- 贝塔0.78
- 夏普比率-0.48
- 胜率0.49
- 盈亏比1.02
- 收益波动率21.4%
- 信息比率-0.05
- 最大回撤25.91%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-33437f4507184b6d956a49af69f49c6b"}/bigcharts-data-end