{"Description":"实验创建于2017/11/15","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-281:options_data","SourceOutputPortId":"-214:data_1"},{"DestinationInputPortId":"-316:inputs","SourceOutputPortId":"-210:data"},{"DestinationInputPortId":"-218:inputs","SourceOutputPortId":"-210:data"},{"DestinationInputPortId":"-1403:inputs","SourceOutputPortId":"-218:data"},{"DestinationInputPortId":"-320:input_model","SourceOutputPortId":"-316:data"},{"DestinationInputPortId":"-332:trained_model","SourceOutputPortId":"-320:data"},{"DestinationInputPortId":"-214:input_1","SourceOutputPortId":"-332:data"},{"DestinationInputPortId":"-692:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-1126:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-1134:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-541:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-578:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-585:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-1488:inputs","SourceOutputPortId":"-259:data"},{"DestinationInputPortId":"-2296:input_data","SourceOutputPortId":"-2290:data"},{"DestinationInputPortId":"-1126:input_data","SourceOutputPortId":"-2296:data"},{"DestinationInputPortId":"-567:instruments","SourceOutputPortId":"-620:data"},{"DestinationInputPortId":"-578:instruments","SourceOutputPortId":"-620:data"},{"DestinationInputPortId":"-557:input_data","SourceOutputPortId":"-692:data"},{"DestinationInputPortId":"-259:inputs","SourceOutputPortId":"-1403:data"},{"DestinationInputPortId":"-316:outputs","SourceOutputPortId":"-1488:data"},{"DestinationInputPortId":"-320:training_data","SourceOutputPortId":"-1126:data"},{"DestinationInputPortId":"-332:input_data","SourceOutputPortId":"-1134:data"},{"DestinationInputPortId":"-214:input_2","SourceOutputPortId":"-1134:data"},{"DestinationInputPortId":"-2290:data2","SourceOutputPortId":"-541:data"},{"DestinationInputPortId":"-585:instruments","SourceOutputPortId":"-549:data"},{"DestinationInputPortId":"-281:instruments","SourceOutputPortId":"-549:data"},{"DestinationInputPortId":"-1134:input_data","SourceOutputPortId":"-557:data"},{"DestinationInputPortId":"-214:input_3","SourceOutputPortId":"-557:data"},{"DestinationInputPortId":"-2290:data1","SourceOutputPortId":"-567:data"},{"DestinationInputPortId":"-541:input_data","SourceOutputPortId":"-578:data"},{"DestinationInputPortId":"-692:input_data","SourceOutputPortId":"-585:data"}],"ModuleNodes":[{"Id":"-214","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n pred_label = input_1.read_pickle()\n test_data = input_2.read_pickle()\n \n pred_result = pred_label.reshape(pred_label.shape[0]) \n dt = input_3.read_df()['date'][-1*len(pred_result):]\n pred_df = pd.Series(pred_result, index=dt)\n ds = DataSource.write_df(pred_df)\n \n# pred_label = np.where(pred_label>0.5,1,0)\n# labels = test_data['y']\n# print('准确率%s'%(np.mean(pred_label==labels)))\n \n return Outputs(data_1=ds)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-214"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-214"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-214"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-214","OutputType":null},{"Name":"data_2","NodeId":"-214","OutputType":null},{"Name":"data_3","NodeId":"-214","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"模型预测结果输出","CommentCollapsed":false},{"Id":"-210","ModuleId":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","ModuleParameters":[{"Name":"shape","Value":"100,1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dtype","Value":"float32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sparse","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-210"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-210","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true},{"Id":"-218","ModuleId":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","ModuleParameters":[{"Name":"units","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_activation","Value":"hard_sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_initializer","Value":"Orthogonal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Ones","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"unit_forget_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dropout","Value":"0.2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_dropout","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"return_sequences","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"implementation","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-218"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-218","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true},{"Id":"-316","ModuleId":"BigQuantSpace.dl_model_init.dl_model_init-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-316"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"outputs","NodeId":"-316"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-316","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":5,"Comment":"","CommentCollapsed":true},{"Id":"-320","ModuleId":"BigQuantSpace.dl_model_train.dl_model_train-v1","ModuleParameters":[{"Name":"optimizer","Value":"SGD","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_optimizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"loss","Value":"binary_crossentropy","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_loss","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"metrics","Value":"accuracy","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_size","Value":"2048","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"epochs","Value":"10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"1:输出进度条记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_model","NodeId":"-320"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_data","NodeId":"-320"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"validation_data","NodeId":"-320"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-320","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"Comment":"","CommentCollapsed":true},{"Id":"-332","ModuleId":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","ModuleParameters":[{"Name":"batch_size","Value":"10240","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":"2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"2:每个epoch输出一行记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trained_model","NodeId":"-332"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-332"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-332","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"Comment":"","CommentCollapsed":true},{"Id":"-2295","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"shift(close_0,1)","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-2295"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2295","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"Comment":"","CommentCollapsed":true},{"Id":"-259","ModuleId":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","ModuleParameters":[{"Name":"units","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-259"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-259","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":9,"Comment":"","CommentCollapsed":true},{"Id":"-2290","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-2290"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-2290"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2290","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"Comment":"标注特征连接","CommentCollapsed":false},{"Id":"-2296","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-2296"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2296","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"Comment":"去掉为nan的数据","CommentCollapsed":true},{"Id":"-620","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2017-03-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"600009.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-620"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-620","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":24,"Comment":"证券标的及起始截止时间","CommentCollapsed":true},{"Id":"-692","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-692"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-692"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-692","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":26,"Comment":"计算需要使用的特征","CommentCollapsed":false},{"Id":"-281","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"2017-04-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n try:\n prediction = context.prediction[data.current_dt.strftime('%Y-%m-%d')]\n except KeyError as e:\n return\n \n instrument = context.instruments[0]\n sid = context.symbol(instrument)\n cur_position = context.portfolio.positions[sid].amount\n \n # 交易逻辑\n if prediction > 0.5 and cur_position == 0:\n context.order_target_percent(context.symbol(instrument), 1)\n print(data.current_dt, '买入!')\n \n elif prediction < 0.5 and cur_position > 0:\n context.order_target_percent(context.symbol(instrument), 0)\n print(data.current_dt, '卖出!')\n ","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-281"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-281","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":1,"Comment":"","CommentCollapsed":true},{"Id":"-1403","ModuleId":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","ModuleParameters":[{"Name":"units","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_activation","Value":"hard_sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_initializer","Value":"Orthogonal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"unit_forget_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dropout","Value":"0.2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_dropout","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"return_sequences","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"implementation","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-1403"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1403","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":25,"Comment":"","CommentCollapsed":true},{"Id":"-1488","ModuleId":"BigQuantSpace.dl_layer_activation.dl_layer_activation-v1","ModuleParameters":[{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-1488"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1488","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":12,"Comment":"","CommentCollapsed":true},{"Id":"-1126","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":5,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1126"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1126"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1126","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"Comment":"","CommentCollapsed":true},{"Id":"-1134","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":5,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1134"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1134"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1134","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"Comment":"","CommentCollapsed":true},{"Id":"-541","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-541"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-541"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-541","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"Comment":"计算需要使用的特征","CommentCollapsed":true},{"Id":"-549","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2020-03-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"600009.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-549"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-549","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":19,"Comment":"证券标的及起始截止时间","CommentCollapsed":true},{"Id":"-557","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-557"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-557","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"Comment":"去掉为nan的数据","CommentCollapsed":true},{"Id":"-567","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:未来10日上涨标记为1,否则为0\nwhere(shift(close,-10)/close - 1>0,1,0)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-567"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-567","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":23,"Comment":"","CommentCollapsed":true},{"Id":"-578","ModuleId":"BigQuantSpace.general_feature_extractor_vx1.general_feature_extractor_vx1-v1","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-578"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-578"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-578","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"Comment":"","CommentCollapsed":true},{"Id":"-585","ModuleId":"BigQuantSpace.general_feature_extractor_vx1.general_feature_extractor_vx1-v1","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-585"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-585"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-585","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-214' Position='879.347412109375,728.6610717773438,200,200'/><NodePosition Node='-210' Position='220.67178344726562,-58.86646842956543,200,200'/><NodePosition Node='-218' Position='257.16510009765625,62.744834899902344,200,200'/><NodePosition Node='-316' Position='89,485,200,200'/><NodePosition Node='-320' Position='427.3958740234375,549.1852416992188,200,200'/><NodePosition Node='-332' Position='678.73486328125,639.4673461914062,200,200'/><NodePosition Node='-2295' Position='985.024658203125,-388.4052429199219,200,200'/><NodePosition Node='-259' Position='272,300,200,200'/><NodePosition Node='-2290' Position='749.793701171875,73.90994262695312,200,200'/><NodePosition Node='-2296' Position='749.793701171875,197.90994262695312,200,200'/><NodePosition Node='-620' Position='627.2740478515625,-276.60223388671875,200,200'/><NodePosition Node='-692' Position='1230.70361328125,-64.17260932922363,200,200'/><NodePosition Node='-281' Position='1069.3958740234375,860.1852416992188,200,200'/><NodePosition Node='-1403' Position='267.61163330078125,172.18197631835938,200,200'/><NodePosition Node='-1488' Position='256,400,200,200'/><NodePosition Node='-1126' Position='710,375,200,200'/><NodePosition Node='-1134' Position='1060,372,200,200'/><NodePosition Node='-541' Position='933.866943359375,-63.04878234863281,200,200'/><NodePosition Node='-549' Position='1176.7149047851562,-264.8667907714844,200,200'/><NodePosition Node='-557' Position='1126.7955932617188,188.42213439941406,200,200'/><NodePosition Node='-567' Position='618.0687866210938,-52.555179595947266,200,200'/><NodePosition Node='-578' Position='806.42529296875,-184.537353515625,200,200'/><NodePosition Node='-585' Position='1194.0386962890625,-159.537353515625,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2020-03-02 15:30:02.069365] INFO: bigquant: dl_layer_input.v1 运行完成[0.003092s].
[2020-03-02 15:30:02.521524] INFO: bigquant: dl_layer_lstm.v1 运行完成[0.449405s].
[2020-03-02 15:30:02.977858] INFO: bigquant: dl_layer_lstm.v1 运行完成[0.453976s].
[2020-03-02 15:30:02.992978] INFO: bigquant: dl_layer_dense.v1 运行完成[0.012194s].
[2020-03-02 15:30:02.997217] INFO: bigquant: dl_layer_activation.v1 运行完成[0.002507s].
[2020-03-02 15:30:03.024807] INFO: bigquant: cached.v3 开始运行..
[2020-03-02 15:30:03.126089] INFO: bigquant: cached.v3 运行完成[0.101277s].
[2020-03-02 15:30:03.128202] INFO: bigquant: dl_model_init.v1 运行完成[0.128969s].
[2020-03-02 15:30:03.130719] INFO: bigquant: input_features.v1 开始运行..
[2020-03-02 15:30:03.155013] INFO: bigquant: 命中缓存
[2020-03-02 15:30:03.156623] INFO: bigquant: input_features.v1 运行完成[0.025893s].
[2020-03-02 15:30:03.158858] INFO: bigquant: instruments.v2 开始运行..
[2020-03-02 15:30:03.182734] INFO: bigquant: 命中缓存
[2020-03-02 15:30:03.184444] INFO: bigquant: instruments.v2 运行完成[0.02557s].
[2020-03-02 15:30:03.189618] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
[2020-03-02 15:30:03.218479] INFO: bigquant: 命中缓存
[2020-03-02 15:30:03.220470] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.030846s].
[2020-03-02 15:30:03.244077] INFO: bigquant: general_feature_extractor_vx1.v1 开始运行..
[2020-03-02 15:30:03.268207] INFO: bigquant: 命中缓存
[2020-03-02 15:30:03.270974] INFO: bigquant: general_feature_extractor_vx1.v1 运行完成[0.026885s].
[2020-03-02 15:30:03.277162] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2020-03-02 15:30:03.301679] INFO: bigquant: 命中缓存
[2020-03-02 15:30:03.303044] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.025903s].
[2020-03-02 15:30:03.305610] INFO: bigquant: join.v3 开始运行..
[2020-03-02 15:30:03.354700] INFO: bigquant: 命中缓存
[2020-03-02 15:30:03.356244] INFO: bigquant: join.v3 运行完成[0.050632s].
[2020-03-02 15:30:03.358892] INFO: bigquant: dropnan.v1 开始运行..
[2020-03-02 15:30:03.388784] INFO: bigquant: 命中缓存
[2020-03-02 15:30:03.391330] INFO: bigquant: dropnan.v1 运行完成[0.03241s].
[2020-03-02 15:30:03.421884] INFO: bigquant: dl_convert_to_bin.v2 开始运行..
[2020-03-02 15:30:03.452180] INFO: bigquant: 命中缓存
[2020-03-02 15:30:03.453937] INFO: bigquant: dl_convert_to_bin.v2 运行完成[0.032052s].
[2020-03-02 15:30:03.456482] INFO: bigquant: dl_model_train.v1 开始运行..
[2020-03-02 15:30:04.550105] INFO: dl_model_train: 准备训练,训练样本个数:525,迭代次数:10
[2020-03-02 15:31:10.893909] INFO: dl_model_train: 训练结束,耗时:66.34s
[2020-03-02 15:31:10.994721] INFO: bigquant: dl_model_train.v1 运行完成[67.538233s].
[2020-03-02 15:31:10.996944] INFO: bigquant: instruments.v2 开始运行..
[2020-03-02 15:31:11.027987] INFO: bigquant: 命中缓存
[2020-03-02 15:31:11.032525] INFO: bigquant: instruments.v2 运行完成[0.035564s].
[2020-03-02 15:31:11.060030] INFO: bigquant: general_feature_extractor_vx1.v1 开始运行..
[2020-03-02 15:31:11.089693] INFO: bigquant: 命中缓存
[2020-03-02 15:31:11.091085] INFO: bigquant: general_feature_extractor_vx1.v1 运行完成[0.031063s].
[2020-03-02 15:31:11.093100] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2020-03-02 15:31:11.130458] INFO: bigquant: 命中缓存
[2020-03-02 15:31:11.131781] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.038673s].
[2020-03-02 15:31:11.136765] INFO: bigquant: dropnan.v1 开始运行..
[2020-03-02 15:31:11.162686] INFO: bigquant: 命中缓存
[2020-03-02 15:31:11.164042] INFO: bigquant: dropnan.v1 运行完成[0.02727s].
[2020-03-02 15:31:11.186039] INFO: bigquant: dl_convert_to_bin.v2 开始运行..
[2020-03-02 15:31:11.212126] INFO: bigquant: 命中缓存
[2020-03-02 15:31:11.213505] INFO: bigquant: dl_convert_to_bin.v2 运行完成[0.027471s].
[2020-03-02 15:31:11.217566] INFO: bigquant: dl_model_predict.v1 开始运行..
[2020-03-02 15:31:12.552076] INFO: device_manager: 没有gpu资源,将使用cpu计算
[2020-03-02 15:31:12.554934] INFO: device_manager: 本次操作不使用GPU
[2020-03-02 15:31:14.497730] INFO: bigquant: dl_model_predict.v1 运行完成[3.280141s].
[2020-03-02 15:31:14.504404] INFO: bigquant: cached.v3 开始运行..
[2020-03-02 15:31:14.719161] INFO: bigquant: cached.v3 运行完成[0.21475s].
[2020-03-02 15:31:15.024787] INFO: bigquant: backtest.v8 开始运行..
[2020-03-02 15:31:15.028793] INFO: bigquant: biglearning backtest:V8.3.2
[2020-03-02 15:31:15.030669] INFO: bigquant: product_type:stock by specified
[2020-03-02 15:31:15.372428] INFO: bigquant: cached.v2 开始运行..
[2020-03-02 15:31:33.185619] INFO: bigquant: 读取股票行情完成:952
[2020-03-02 15:31:33.321551] INFO: bigquant: cached.v2 运行完成[17.949125s].
[2020-03-02 15:31:33.368180] INFO: algo: TradingAlgorithm V1.6.5
[2020-03-02 15:31:34.614837] INFO: algo: trading transform...
[2020-03-02 15:31:36.760901] INFO: algo: handle_splits get splits [dt:2019-08-22 00:00:00+00:00] [asset:Equity(0 [600009.SHA]), ratio:0.9922354221343994]
[2020-03-02 15:31:36.762783] INFO: Position: position stock handle split[sid:0, orig_amount:18500, new_amount:18644.0, orig_cost:54.00008007534902, new_cost:53.58, ratio:0.9922354221343994, last_sale_price:84.34001159667969]
[2020-03-02 15:31:36.767335] INFO: Position: after split: PositionStock(asset:Equity(0 [600009.SHA]), amount:18644.0, cost_basis:53.58, last_sale_price:85.0)
[2020-03-02 15:31:36.768844] INFO: Position: returning cash: 64.84
[2020-03-02 15:31:37.276146] INFO: Performance: Simulated 708 trading days out of 708.
[2020-03-02 15:31:37.277611] INFO: Performance: first open: 2017-04-05 09:30:00+00:00
[2020-03-02 15:31:37.278687] INFO: Performance: last close: 2020-02-28 15:00:00+00:00
[2020-03-02 15:31:40.572547] INFO: bigquant: backtest.v8 运行完成[25.54776s].
[2020-03-02 15:31:40.574227] INFO: bigquant: trade.v4 运行完成[25.852802s].
Train on 525 samples
Epoch 1/10
525/525 [==============================] - 17s 32ms/sample - loss: 0.6904 - accuracy: 0.5257
Epoch 2/10
525/525 [==============================] - 5s 10ms/sample - loss: 0.6931 - accuracy: 0.5314
Epoch 3/10
525/525 [==============================] - 5s 10ms/sample - loss: 0.6874 - accuracy: 0.5390
Epoch 4/10
525/525 [==============================] - 5s 9ms/sample - loss: 0.6953 - accuracy: 0.5010
Epoch 5/10
525/525 [==============================] - 6s 11ms/sample - loss: 0.6936 - accuracy: 0.5238
Epoch 6/10
525/525 [==============================] - 6s 11ms/sample - loss: 0.6890 - accuracy: 0.5314
Epoch 7/10
525/525 [==============================] - 6s 12ms/sample - loss: 0.6911 - accuracy: 0.5390
Epoch 8/10
525/525 [==============================] - 5s 9ms/sample - loss: 0.6919 - accuracy: 0.5162
Epoch 9/10
525/525 [==============================] - 5s 10ms/sample - loss: 0.6922 - accuracy: 0.5333
Epoch 10/10
525/525 [==============================] - 7s 12ms/sample - loss: 0.6923 - accuracy: 0.5333
339/339 - 2s
DataSource(9266b7ad07c94f078913ff6da14250e2T, v3)
2018-10-09 15:00:00+00:00 买入!
- 收益率22.59%
- 年化收益率7.52%
- 基准收益率14.0%
- 阿尔法0.05
- 贝塔0.63
- 夏普比率0.3
- 胜率1.0
- 盈亏比0.0
- 收益波动率24.56%
- 信息比率0.01
- 最大回撤27.07%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9b92f046d2434e4a837d402bd366f03b"}/bigcharts-data-end