克隆策略

模型优化提升思路:

1) 添加对训练集的预测,用于判断是否是过拟合还是欠拟合,看效果 2) 添加中间展示和调优的部分,用于改进模型和判断程序是否正常运行 3) 进行一个完整的训练

In [13]:
m13.data.read_df().head()
Out[13]:
date instrument rank_avg_amount_5 rank_avg_turn_5 rank_volatility_5_0 rank_swing_volatility_5_0 rank_avg_mf_net_amount_5 rank_beta_industry_5_0 rank_return_5 rank_return_2 ... std(close_0,50)/std(close_0,100)-1 shift(mf_net_amount_s_0,3) shift(mf_net_amount_m_0,3) shift(mf_net_amount_l_0,3) m:amount m:high m:low m:close m:open label
0 2014-06-03 000001.SZA 0.980061 0.300824 0.023407 0.097096 0.982661 0.395217 0.351105 0.594278 ... -0.336486 -5978800.0 7045200.0 3442100.0 322371200.0 682.544983 671.451416 672.035278 671.451416 1
1 2014-06-04 000001.SZA 0.982266 0.309256 0.106834 0.130190 0.172578 0.676790 0.422145 0.406574 ... -0.393031 2724300.0 -10362600.0 -35613000.0 367011936.0 672.619141 656.854614 661.525635 672.035278 1
2 2014-06-05 000001.SZA 0.982197 0.304820 0.142423 0.173252 0.963526 0.590335 0.307859 0.369518 ... -0.387902 9667800.0 6191200.0 -36925300.0 280049632.0 667.948181 659.190125 667.364319 659.773987 1
3 2014-06-06 000001.SZA 0.975684 0.269214 0.181937 0.160226 0.468085 0.478450 0.403821 0.317846 ... -0.390327 -4289000.0 -13013800.0 13580000.0 212129088.0 670.283691 659.190125 664.444946 667.948181 1
4 2014-06-09 000001.SZA 0.977836 0.269013 0.258583 0.142547 0.079096 0.523747 0.565841 0.696219 ... -0.405316 28573700.0 -14623100.0 13507700.0 359580576.0 673.786865 660.941711 670.283691 662.693359 1

5 rows × 71 columns

    {"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-106:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-106:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-113:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-122:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-129:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-122:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-126:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-117:input_1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"-113:input_data","SourceOutputPortId":"-106:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-113:data"},{"DestinationInputPortId":"-129:input_data","SourceOutputPortId":"-122:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-129:data"},{"DestinationInputPortId":"-388:input_1","SourceOutputPortId":"-117:data_1"},{"DestinationInputPortId":"-3954:input_1","SourceOutputPortId":"-388:data_1"},{"DestinationInputPortId":"-141:options_data","SourceOutputPortId":"-388:data_1"},{"DestinationInputPortId":"-1689:input_data","SourceOutputPortId":"-126:data"},{"DestinationInputPortId":"-388:input_2","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-3954:input_2","SourceOutputPortId":"-1689:data"},{"DestinationInputPortId":"-141:instruments","SourceOutputPortId":"-3472:data"},{"DestinationInputPortId":"-117:input_2","SourceOutputPortId":"-170:data_1"},{"DestinationInputPortId":"-388:input_3","SourceOutputPortId":"-170:data_1"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2016-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格), 五日收益率为正数\nwhere(shift(close, -5) / shift(open, -1)>1.001,1,0)\n\n# 极值处理:用1%和99%分位的值做clip\n#clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n# 过滤掉一字涨跌停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label) # 一开盘就到了10%那里,既是high也是low\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\n\nreturn_5-1\nreturn_10-1\nreturn_20-1\navg_amount_0/avg_amount_5-1\navg_amount_5/avg_amount_20-1\nrank_avg_amount_0-rank_avg_amount_5\nrank_avg_amount_5-rank_avg_amount_10\nrank_return_0-rank_return_5\nrank_return_5-rank_return_10\nbeta_csi300_30_0/10\nbeta_csi300_60_0/10\nswing_volatility_5_0/swing_volatility_30_0-1\nswing_volatility_30_0/swing_volatility_60_0-1\nta_atr_14_0/ta_atr_28_0-1\nta_sma_5_0/ta_sma_20_0-1\nta_sma_10_0/ta_sma_20_0-1\nta_sma_20_0/ta_sma_30_0-1\nta_sma_30_0/ta_sma_60_0-1\nta_rsi_14_0/100\nta_rsi_28_0/100\nta_cci_14_0/500\nta_cci_28_0/500\nbeta_industry_30_0/10\nbeta_industry_60_0/10\nta_sma(amount_0, 10)/ta_sma(amount_0, 20)-1\nta_sma(amount_0, 20)/ta_sma(amount_0, 30)-1\nta_sma(amount_0, 30)/ta_sma(amount_0, 60)-1\nta_sma(amount_0, 50)/ta_sma(amount_0, 100)-1\nta_sma(turn_0, 10)/ta_sma(turn_0, 20)-1\nta_sma(turn_0, 20)/ta_sma(turn_0, 30)-1\nta_sma(turn_0, 30)/ta_sma(turn_0, 60)-1\nta_sma(turn_0, 50)/ta_sma(turn_0, 100)-1\nhigh_0/low_0-1\nclose_0/open_0-1\nshift(close_0,1)/close_0-1\nshift(close_0,2)/close_0-1\nshift(close_0,3)/close_0-1\nshift(close_0,4)/close_0-1\nshift(close_0,5)/close_0-1\nshift(close_0,10)/close_0-1\nshift(close_0,20)/close_0-1\nta_sma(high_0-low_0, 5)/ta_sma(high_0-low_0, 20)-1\nta_sma(high_0-low_0, 10)/ta_sma(high_0-low_0, 20)-1\nta_sma(high_0-low_0, 20)/ta_sma(high_0-low_0, 30)-1\nta_sma(high_0-low_0, 30)/ta_sma(high_0-low_0, 60)-1\nta_sma(high_0-low_0, 50)/ta_sma(high_0-low_0, 100)-1\nrank_avg_amount_5\nrank_avg_turn_5\nrank_volatility_5_0\nrank_swing_volatility_5_0\nrank_avg_mf_net_amount_5\nrank_beta_industry_5_0\nrank_return_5\nrank_return_2\nstd(close_0,5)/std(close_0,20)-1\nstd(close_0,10)/std(close_0,20)-1\nstd(close_0,20)/std(close_0,30)-1\nstd(close_0,30)/std(close_0,60)-1\nstd(close_0,50)/std(close_0,100)-1\nmf_net_amount_1\nshift(mf_net_amount_s_0,3)\nshift(mf_net_amount_m_0,3)\nshift(mf_net_amount_l_0,3)","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2016-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"Comment":"","CommentCollapsed":true},{"Id":"-106","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-106"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-106"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-106","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"Comment":"","CommentCollapsed":true},{"Id":"-113","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-113"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-113"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-113","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"Comment":"","CommentCollapsed":true},{"Id":"-122","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-122"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-122"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-122","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"Comment":"","CommentCollapsed":true},{"Id":"-129","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-129"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-129"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-129","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"Comment":"","CommentCollapsed":true},{"Id":"-141","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = [m for m in list(ranker_prediction[ranker_prediction.prediction<0.42].instrument) if m in equities]\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_instruments = list(ranker_prediction[ranker_prediction.prediction>0.66].instrument) #\n buy_cash_weights = [1/len(buy_instruments) for k in range(len(buy_instruments))] \n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-141"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-141","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"Comment":"","CommentCollapsed":true},{"Id":"-117","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# 特征提取与转换\n# Feature selection and transformation\n\ndef bigquant_run(input_1, input_2, input_3):\n\n \n # 包的加载\n # Package loaded\n # 这里有很多包其实在这个方法里是用不着的,比如我们仅仅用了GBDT,我们暂时也不需要做训练集和测试集的划分\n \n import numpy as np\n np.random.seed(10)\n\n import matplotlib.pyplot as plt\n\n from sklearn.datasets import make_classification\n from sklearn.linear_model import LogisticRegression\n from sklearn.ensemble import (RandomTreesEmbedding, RandomForestClassifier,\n GradientBoostingClassifier)\n from sklearn.preprocessing import OneHotEncoder\n from sklearn.model_selection import train_test_split\n from sklearn.metrics import roc_curve\n from sklearn.pipeline import make_pipeline #做模型之间的管子链接\n\n ## 设置机器学习的参数,区分预测集和训练集\n ## Set parameters and load data\n Data = input_1.read_df() #获取全部数据\n X = Data[input_2.read_pickle()]\n y = pd.DataFrame(Data['label'])\n \n #print(y.columns)\n #print(X.columns)\n n_estimator = 5\n\n # 在这里我们实际上不需要做测试集和训练集的区分,因为本部分本来就是训练的部分\n X_train = X\n y_train = y\n\n # 需要将对 LR和GBDT的训练集给区分开来\n # It is important to train the ensemble of trees on a different subset of the training data than the linear regression model to avoid overfitting, in particular if the total number of leaves is similar to the number of training samples\n X_train, X_train_lr, y_train, y_train_lr = train_test_split(X_train, y_train, test_size=0.7)\n\n # Supervised transformation based on gradient boosted trees\n # 这里是训练好的模型,GBDT模型,编码模型和逻辑回归模型\n grd = GradientBoostingClassifier(n_estimators=n_estimator) \n grd_enc = OneHotEncoder(categories='auto')\n grd_lm = LogisticRegression(solver='lbfgs', max_iter=1000)\n grd.fit(X_train, y_train)\n grd_enc.fit(grd.apply(X_train)[:, :, 0])\n grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr)\n \n Model = dict()\n Model['grd'] = grd\n Model['grd_enc'] = grd_enc\n Model['grd_lm'] = grd_lm\n \n T = DataSource.write_pickle(Model)\n return Outputs(data_1=T, data_2=None, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-117"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-117"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-117"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-117","OutputType":null},{"Name":"data_2","NodeId":"-117","OutputType":null},{"Name":"data_3","NodeId":"-117","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true},{"Id":"-388","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# 输入的是模型,输出的是预测部分\n\ndef bigquant_run(input_1, input_2, input_3):\n \n # 三个模型从这个字典结构里面拿出来\n\n Model = input_1.read_pickle()\n \n grd = Model['grd']\n grd_enc = Model['grd_enc'] \n grd_lm = Model['grd_lm']\n \n \n \n X_test = input_2.read_df()\n X_test1 = X_test[input_3.read_pickle()]\n y_pred_grd_lm = grd_lm.predict_proba(grd_enc.transform(grd.apply(X_test1)[:, :, 0]))[:, 1]\n \n \n Y = pd.DataFrame(y_pred_grd_lm,columns=['prediction'])\n \n Y['date'] = X_test['date']\n Y['instrument'] = X_test['instrument']\n \n Y = DataSource.write_df(Y)\n return Outputs(data_1=Y, data_2=None, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-388"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-388"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-388"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-388","OutputType":null},{"Name":"data_2","NodeId":"-388","OutputType":null},{"Name":"data_3","NodeId":"-388","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"Comment":"","CommentCollapsed":true},{"Id":"-3954","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n \n import matplotlib.pyplot as plt\n from sklearn.metrics import confusion_matrix\n # 本部分的主要功能是对模型的预测效果进行分析\n\n Data_pre = input_1.read_df()\n Data_real = input_2.read_df()\n \n Data = pd.merge(Data_pre,Data_real,how='inner',on = ['date','instrument'])\n Pred = np.where(Data['prediction']>0.5,1,0)\n Real = np.array(Data['label'])\n \n cm = confusion_matrix(Real, Pred)\n \n cm_normalized = cm.astype('float')/cm.sum(axis=1)[:, np.newaxis]\n print(cm_normalized)\n \n \n import seaborn as sn\n \n df_cm = pd.DataFrame(cm_normalized)\n plt.figure(figsize = (15,10))\n sn.heatmap(df_cm, annot=True)\n print('准确率')\n c = (Real == Pred)\n print(len(c[c])/len(c))\n print('预测涨结果涨')\n P = Real[c]\n L11 = len(P[P==1])\n print(L11)\n print('预测跌结果跌')\n L00 = len(P[P==0])\n print(L00)\n print('预测涨结果跌')\n L10 = len(Real[Real==0])-len(P[P==0])\n print(L10)\n print('预测跌结果涨')\n L01 = len(Real[Real==1])-len(P[P==1])\n print(L01)\n print('\\n')\n print('查准率\\n')\n print('预测涨的准确率\\n')\n print(L11/(L11+L10))\n print('预测跌的准确率\\n')\n print(L00/(L01+L00))\n print('\\n')\n \n print('查全率\\n')\n print('涨的股票中预测准确率\\n')\n print(L11/(L11+L01))\n print('跌的股票中预测准确率\\n')\n print(L00/(L00+L10))\n \n from sklearn.metrics import roc_curve\n fpr_grd_lm, tpr_grd_lm, _ = roc_curve(Real, Pred)\n \n plt.figure()\n plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT')\n plt.xlabel('False positive rate')\n plt.ylabel('True positive rate')\n plt.title('ROC curve')\n plt.legend(loc='best')\n plt.show()\n return Outputs(data_1=DataSource.write_pickle(Real), data_2=DataSource.write_pickle(Pred), data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-3954"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-3954"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-3954"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-3954","OutputType":null},{"Name":"data_2","NodeId":"-3954","OutputType":null},{"Name":"data_3","NodeId":"-3954","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":6,"Comment":"","CommentCollapsed":true},{"Id":"-126","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nwhere(shift(close, -5) / shift(open, -1)>1,1,0)\n\n# 极值处理:用1%和99%分位的值做clip\n#clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-126"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-126","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"Comment":"","CommentCollapsed":true},{"Id":"-1689","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1689"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1689","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"Comment":"","CommentCollapsed":true},{"Id":"-3472","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2016-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-3472"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3472","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"Comment":"","CommentCollapsed":true},{"Id":"-170","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n \n # 输入我们需要的特征名\n # Input the features we need\n \n Columns = ['rank_avg_amount_5', 'rank_avg_turn_5',\n 'rank_volatility_5_0', 'rank_swing_volatility_5_0',\n 'rank_avg_mf_net_amount_5', 'rank_beta_industry_5_0', 'rank_return_5',\n 'rank_return_2', 'mf_net_amount_1', 'return_5-1', 'return_10-1',\n 'return_20-1', 'avg_amount_0/avg_amount_5-1',\n 'avg_amount_5/avg_amount_20-1', 'rank_avg_amount_0-rank_avg_amount_5',\n 'rank_avg_amount_5-rank_avg_amount_10', 'rank_return_0-rank_return_5',\n 'rank_return_5-rank_return_10', 'beta_csi300_30_0/10',\n 'beta_csi300_60_0/10', 'swing_volatility_5_0/swing_volatility_30_0-1',\n 'swing_volatility_30_0/swing_volatility_60_0-1',\n 'ta_atr_14_0/ta_atr_28_0-1', 'ta_sma_5_0/ta_sma_20_0-1',\n 'ta_sma_10_0/ta_sma_20_0-1', 'ta_sma_20_0/ta_sma_30_0-1',\n 'ta_sma_30_0/ta_sma_60_0-1', 'ta_rsi_14_0/100', 'ta_rsi_28_0/100',\n 'ta_cci_14_0/500', 'ta_cci_28_0/500', 'beta_industry_30_0/10',\n 'beta_industry_60_0/10', 'ta_sma(amount_0, 10)/ta_sma(amount_0, 20)-1',\n 'ta_sma(amount_0, 20)/ta_sma(amount_0, 30)-1',\n 'ta_sma(amount_0, 30)/ta_sma(amount_0, 60)-1',\n 'ta_sma(amount_0, 50)/ta_sma(amount_0, 100)-1',\n 'ta_sma(turn_0, 10)/ta_sma(turn_0, 20)-1',\n 'ta_sma(turn_0, 20)/ta_sma(turn_0, 30)-1',\n 'ta_sma(turn_0, 30)/ta_sma(turn_0, 60)-1',\n 'ta_sma(turn_0, 50)/ta_sma(turn_0, 100)-1', 'high_0/low_0-1',\n 'close_0/open_0-1', 'shift(close_0,1)/close_0-1',\n 'shift(close_0,2)/close_0-1', 'shift(close_0,3)/close_0-1',\n 'shift(close_0,4)/close_0-1', 'shift(close_0,5)/close_0-1',\n 'shift(close_0,10)/close_0-1', 'shift(close_0,20)/close_0-1',\n 'ta_sma(high_0-low_0, 5)/ta_sma(high_0-low_0, 20)-1',\n 'ta_sma(high_0-low_0, 10)/ta_sma(high_0-low_0, 20)-1',\n 'ta_sma(high_0-low_0, 20)/ta_sma(high_0-low_0, 30)-1',\n 'ta_sma(high_0-low_0, 30)/ta_sma(high_0-low_0, 60)-1',\n 'ta_sma(high_0-low_0, 50)/ta_sma(high_0-low_0, 100)-1',\n 'std(close_0,5)/std(close_0,20)-1', 'std(close_0,10)/std(close_0,20)-1',\n 'std(close_0,20)/std(close_0,30)-1',\n 'std(close_0,30)/std(close_0,60)-1',\n 'std(close_0,50)/std(close_0,100)-1', 'shift(mf_net_amount_s_0,3)',\n 'shift(mf_net_amount_m_0,3)', 'shift(mf_net_amount_l_0,3)']\n \n C = DataSource.write_pickle(Columns)\n \n return Outputs(data_1=C, data_2=None, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-170"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-170"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-170"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-170","OutputType":null},{"Name":"data_2","NodeId":"-170","OutputType":null},{"Name":"data_3","NodeId":"-170","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='-77.36975479125977,-509.498348236084,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='-119.75482940673828,-257.4370346069336,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='551.20849609375,-489.6822052001953,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='-40.264495849609375,-57.605634689331055,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1579,-210,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='25.62823486328125,76.8867416381836,200,200'/><NodePosition Node='-106' Position='124.0726318359375,-345.6668701171875,200,200'/><NodePosition Node='-113' Position='254.18389892578125,-196.6975326538086,200,200'/><NodePosition Node='-122' Position='1230,-50,200,200'/><NodePosition Node='-129' Position='1126,171,200,200'/><NodePosition Node='-141' Position='1719,939,200,200'/><NodePosition Node='-117' Position='333.0050354003906,426.8447570800781,200,200'/><NodePosition Node='-388' Position='438.78753662109375,677,200,200'/><NodePosition Node='-3954' Position='412,978,200,200'/><NodePosition Node='-126' Position='1485,186,200,200'/><NodePosition Node='-86' Position='871,347,200,200'/><NodePosition Node='-1689' Position='1234,383,200,200'/><NodePosition Node='-3472' Position='1765.5711669921875,51,200,200'/><NodePosition Node='-170' Position='545.5289916992188,-263.16461181640625,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
    In [13]:
    # 本代码由可视化策略环境自动生成 2019年2月13日 20:42
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m21_run_bigquant_run(input_1, input_2, input_3):
        
        # 输入我们需要的特征名
        # Input the features we need
        
        Columns = ['rank_avg_amount_5', 'rank_avg_turn_5',
           'rank_volatility_5_0', 'rank_swing_volatility_5_0',
           'rank_avg_mf_net_amount_5', 'rank_beta_industry_5_0', 'rank_return_5',
           'rank_return_2', 'mf_net_amount_1', 'return_5-1', 'return_10-1',
           'return_20-1', 'avg_amount_0/avg_amount_5-1',
           'avg_amount_5/avg_amount_20-1', 'rank_avg_amount_0-rank_avg_amount_5',
           'rank_avg_amount_5-rank_avg_amount_10', 'rank_return_0-rank_return_5',
           'rank_return_5-rank_return_10', 'beta_csi300_30_0/10',
           'beta_csi300_60_0/10', 'swing_volatility_5_0/swing_volatility_30_0-1',
           'swing_volatility_30_0/swing_volatility_60_0-1',
           'ta_atr_14_0/ta_atr_28_0-1', 'ta_sma_5_0/ta_sma_20_0-1',
           'ta_sma_10_0/ta_sma_20_0-1', 'ta_sma_20_0/ta_sma_30_0-1',
           'ta_sma_30_0/ta_sma_60_0-1', 'ta_rsi_14_0/100', 'ta_rsi_28_0/100',
           'ta_cci_14_0/500', 'ta_cci_28_0/500', 'beta_industry_30_0/10',
           'beta_industry_60_0/10', 'ta_sma(amount_0, 10)/ta_sma(amount_0, 20)-1',
           'ta_sma(amount_0, 20)/ta_sma(amount_0, 30)-1',
           'ta_sma(amount_0, 30)/ta_sma(amount_0, 60)-1',
           'ta_sma(amount_0, 50)/ta_sma(amount_0, 100)-1',
           'ta_sma(turn_0, 10)/ta_sma(turn_0, 20)-1',
           'ta_sma(turn_0, 20)/ta_sma(turn_0, 30)-1',
           'ta_sma(turn_0, 30)/ta_sma(turn_0, 60)-1',
           'ta_sma(turn_0, 50)/ta_sma(turn_0, 100)-1', 'high_0/low_0-1',
           'close_0/open_0-1', 'shift(close_0,1)/close_0-1',
           'shift(close_0,2)/close_0-1', 'shift(close_0,3)/close_0-1',
           'shift(close_0,4)/close_0-1', 'shift(close_0,5)/close_0-1',
           'shift(close_0,10)/close_0-1', 'shift(close_0,20)/close_0-1',
           'ta_sma(high_0-low_0, 5)/ta_sma(high_0-low_0, 20)-1',
           'ta_sma(high_0-low_0, 10)/ta_sma(high_0-low_0, 20)-1',
           'ta_sma(high_0-low_0, 20)/ta_sma(high_0-low_0, 30)-1',
           'ta_sma(high_0-low_0, 30)/ta_sma(high_0-low_0, 60)-1',
           'ta_sma(high_0-low_0, 50)/ta_sma(high_0-low_0, 100)-1',
           'std(close_0,5)/std(close_0,20)-1', 'std(close_0,10)/std(close_0,20)-1',
           'std(close_0,20)/std(close_0,30)-1',
           'std(close_0,30)/std(close_0,60)-1',
           'std(close_0,50)/std(close_0,100)-1', 'shift(mf_net_amount_s_0,3)',
           'shift(mf_net_amount_m_0,3)', 'shift(mf_net_amount_l_0,3)']
        
        C = DataSource.write_pickle(Columns)
        
        return Outputs(data_1=C, data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m21_post_run_bigquant_run(outputs):
        return outputs
    
    # 特征提取与转换
    # Feature selection and transformation
    
    def m4_run_bigquant_run(input_1, input_2, input_3):
    
        
        # 包的加载
        # Package loaded
        # 这里有很多包其实在这个方法里是用不着的,比如我们仅仅用了GBDT,我们暂时也不需要做训练集和测试集的划分
        
        import numpy as np
        np.random.seed(10)
    
        import matplotlib.pyplot as plt
    
        from sklearn.datasets import make_classification
        from sklearn.linear_model import LogisticRegression
        from sklearn.ensemble import (RandomTreesEmbedding, RandomForestClassifier,
                                  GradientBoostingClassifier)
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import roc_curve
        from sklearn.pipeline import make_pipeline   #做模型之间的管子链接
    
        ## 设置机器学习的参数,区分预测集和训练集
        ## Set parameters and load data
        Data = input_1.read_df()  #获取全部数据
        X = Data[input_2.read_pickle()]
        y = pd.DataFrame(Data['label'])
        
        #print(y.columns)
        #print(X.columns)
        n_estimator = 5
    
        # 在这里我们实际上不需要做测试集和训练集的区分,因为本部分本来就是训练的部分
        X_train = X
        y_train = y
    
        # 需要将对 LR和GBDT的训练集给区分开来
        # It is important to train the ensemble of trees on a different subset of the training data than the linear regression model to avoid overfitting, in particular if the total number of leaves is similar to the number of training samples
        X_train, X_train_lr, y_train, y_train_lr = train_test_split(X_train, y_train, test_size=0.7)
    
        # Supervised transformation based on gradient boosted trees
        # 这里是训练好的模型,GBDT模型,编码模型和逻辑回归模型
        grd = GradientBoostingClassifier(n_estimators=n_estimator)   
        grd_enc = OneHotEncoder(categories='auto')
        grd_lm = LogisticRegression(solver='lbfgs', max_iter=1000)
        grd.fit(X_train, y_train)
        grd_enc.fit(grd.apply(X_train)[:, :, 0])
        grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr)
        
        Model = dict()
        Model['grd'] = grd
        Model['grd_enc'] = grd_enc
        Model['grd_lm'] = grd_lm
        
        T = DataSource.write_pickle(Model)
        return Outputs(data_1=T, data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m4_post_run_bigquant_run(outputs):
        return outputs
    
    # 输入的是模型,输出的是预测部分
    
    def m5_run_bigquant_run(input_1, input_2, input_3):
        
        # 三个模型从这个字典结构里面拿出来
    
        Model = input_1.read_pickle()
        
        grd = Model['grd']
        grd_enc = Model['grd_enc'] 
        grd_lm = Model['grd_lm']
        
        
        
        X_test = input_2.read_df()
        X_test1 = X_test[input_3.read_pickle()]
        y_pred_grd_lm = grd_lm.predict_proba(grd_enc.transform(grd.apply(X_test1)[:, :, 0]))[:, 1]
        
        
        Y = pd.DataFrame(y_pred_grd_lm,columns=['prediction'])
        
        Y['date'] = X_test['date']
        Y['instrument'] = X_test['instrument']
        
        Y = DataSource.write_df(Y)
        return Outputs(data_1=Y, data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m5_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m6_run_bigquant_run(input_1, input_2, input_3):
        
        import matplotlib.pyplot as plt
        from sklearn.metrics import confusion_matrix
        # 本部分的主要功能是对模型的预测效果进行分析
    
        Data_pre = input_1.read_df()
        Data_real = input_2.read_df()
        
        Data = pd.merge(Data_pre,Data_real,how='inner',on = ['date','instrument'])
        Pred = np.where(Data['prediction']>0.5,1,0)
        Real = np.array(Data['label'])
        
        cm = confusion_matrix(Real, Pred)
        
        cm_normalized = cm.astype('float')/cm.sum(axis=1)[:, np.newaxis]
        print(cm_normalized)
        
        
        import seaborn as sn
        
        df_cm = pd.DataFrame(cm_normalized)
        plt.figure(figsize = (15,10))
        sn.heatmap(df_cm, annot=True)
        print('准确率')
        c = (Real == Pred)
        print(len(c[c])/len(c))
        print('预测涨结果涨')
        P = Real[c]
        L11 = len(P[P==1])
        print(L11)
        print('预测跌结果跌')
        L00 = len(P[P==0])
        print(L00)
        print('预测涨结果跌')
        L10 = len(Real[Real==0])-len(P[P==0])
        print(L10)
        print('预测跌结果涨')
        L01 = len(Real[Real==1])-len(P[P==1])
        print(L01)
        print('\n')
        print('查准率\n')
        print('预测涨的准确率\n')
        print(L11/(L11+L10))
        print('预测跌的准确率\n')
        print(L00/(L01+L00))
        print('\n')
        
        print('查全率\n')
        print('涨的股票中预测准确率\n')
        print(L11/(L11+L01))
        print('跌的股票中预测准确率\n')
        print(L00/(L00+L10))
        
        from sklearn.metrics import roc_curve
        fpr_grd_lm, tpr_grd_lm, _ = roc_curve(Real, Pred)
        
        plt.figure()
        plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT')
        plt.xlabel('False positive rate')
        plt.ylabel('True positive rate')
        plt.title('ROC curve')
        plt.legend(loc='best')
        plt.show()
        return Outputs(data_1=DataSource.write_pickle(Real), data_2=DataSource.write_pickle(Pred), data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m6_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = [m for m in list(ranker_prediction[ranker_prediction.prediction<0.42].instrument) if m in equities]
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_instruments = list(ranker_prediction[ranker_prediction.prediction>0.66].instrument)  #
        buy_cash_weights = [1/len(buy_instruments) for k in range(len(buy_instruments))]  
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        pass
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.options['hold_days'] = 5
    
    
    m1 = M.instruments.v2(
        start_date='2010-01-01',
        end_date='2016-01-01',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格), 五日收益率为正数
    where(shift(close, -5) / shift(open, -1)>1.001,1,0)
    
    # 极值处理:用1%和99%分位的值做clip
    #clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    #all_wbins(label, 20)
    
    # 过滤掉一字涨跌停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)   # 一开盘就到了10%那里,既是high也是low
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=True
    )
    
    m3 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    
    return_5-1
    return_10-1
    return_20-1
    avg_amount_0/avg_amount_5-1
    avg_amount_5/avg_amount_20-1
    rank_avg_amount_0-rank_avg_amount_5
    rank_avg_amount_5-rank_avg_amount_10
    rank_return_0-rank_return_5
    rank_return_5-rank_return_10
    beta_csi300_30_0/10
    beta_csi300_60_0/10
    swing_volatility_5_0/swing_volatility_30_0-1
    swing_volatility_30_0/swing_volatility_60_0-1
    ta_atr_14_0/ta_atr_28_0-1
    ta_sma_5_0/ta_sma_20_0-1
    ta_sma_10_0/ta_sma_20_0-1
    ta_sma_20_0/ta_sma_30_0-1
    ta_sma_30_0/ta_sma_60_0-1
    ta_rsi_14_0/100
    ta_rsi_28_0/100
    ta_cci_14_0/500
    ta_cci_28_0/500
    beta_industry_30_0/10
    beta_industry_60_0/10
    ta_sma(amount_0, 10)/ta_sma(amount_0, 20)-1
    ta_sma(amount_0, 20)/ta_sma(amount_0, 30)-1
    ta_sma(amount_0, 30)/ta_sma(amount_0, 60)-1
    ta_sma(amount_0, 50)/ta_sma(amount_0, 100)-1
    ta_sma(turn_0, 10)/ta_sma(turn_0, 20)-1
    ta_sma(turn_0, 20)/ta_sma(turn_0, 30)-1
    ta_sma(turn_0, 30)/ta_sma(turn_0, 60)-1
    ta_sma(turn_0, 50)/ta_sma(turn_0, 100)-1
    high_0/low_0-1
    close_0/open_0-1
    shift(close_0,1)/close_0-1
    shift(close_0,2)/close_0-1
    shift(close_0,3)/close_0-1
    shift(close_0,4)/close_0-1
    shift(close_0,5)/close_0-1
    shift(close_0,10)/close_0-1
    shift(close_0,20)/close_0-1
    ta_sma(high_0-low_0, 5)/ta_sma(high_0-low_0, 20)-1
    ta_sma(high_0-low_0, 10)/ta_sma(high_0-low_0, 20)-1
    ta_sma(high_0-low_0, 20)/ta_sma(high_0-low_0, 30)-1
    ta_sma(high_0-low_0, 30)/ta_sma(high_0-low_0, 60)-1
    ta_sma(high_0-low_0, 50)/ta_sma(high_0-low_0, 100)-1
    rank_avg_amount_5
    rank_avg_turn_5
    rank_volatility_5_0
    rank_swing_volatility_5_0
    rank_avg_mf_net_amount_5
    rank_beta_industry_5_0
    rank_return_5
    rank_return_2
    std(close_0,5)/std(close_0,20)-1
    std(close_0,10)/std(close_0,20)-1
    std(close_0,20)/std(close_0,30)-1
    std(close_0,30)/std(close_0,60)-1
    std(close_0,50)/std(close_0,100)-1
    mf_net_amount_1
    shift(mf_net_amount_s_0,3)
    shift(mf_net_amount_m_0,3)
    shift(mf_net_amount_l_0,3)"""
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=0
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=True
    )
    
    m7 = M.join.v3(
        data1=m2.data,
        data2=m16.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m13 = M.dropnan.v1(
        input_data=m7.data
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2016-01-01'),
        end_date=T.live_run_param('trading_date', '2017-01-01'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=0
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m14 = M.dropnan.v1(
        input_data=m18.data
    )
    
    m8 = M.advanced_auto_labeler.v2(
        instruments=m9.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    where(shift(close, -5) / shift(open, -1)>1,1,0)
    
    # 极值处理:用1%和99%分位的值做clip
    #clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    #all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=True
    )
    
    m10 = M.dropnan.v1(
        input_data=m8.data
    )
    
    m11 = M.instruments.v2(
        start_date='2016-01-01',
        end_date='2017-01-01',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m21 = M.cached.v3(
        run=m21_run_bigquant_run,
        post_run=m21_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m4 = M.cached.v3(
        input_1=m13.data,
        input_2=m21.data_1,
        run=m4_run_bigquant_run,
        post_run=m4_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m5 = M.cached.v3(
        input_1=m4.data_1,
        input_2=m14.data,
        input_3=m21.data_1,
        run=m5_run_bigquant_run,
        post_run=m5_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m6 = M.cached.v3(
        input_1=m5.data_1,
        input_2=m10.data,
        run=m6_run_bigquant_run,
        post_run=m6_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports='',
        m_cached=False
    )
    
    m19 = M.trade.v4(
        instruments=m11.data,
        options_data=m5.data_1,
        start_date='',
        end_date='',
        handle_data=m19_handle_data_bigquant_run,
        prepare=m19_prepare_bigquant_run,
        initialize=m19_initialize_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.SHA'
    )
    
    [2019-02-13 20:41:47.543928] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-13 20:41:47.577504] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.578650] INFO: bigquant: instruments.v2 运行完成[0.037267s].
    [2019-02-13 20:41:47.628413] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
    [2019-02-13 20:41:47.635561] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.636858] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.008471s].
    [2019-02-13 20:41:47.644969] INFO: bigquant: input_features.v1 开始运行..
    [2019-02-13 20:41:47.651169] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.652076] INFO: bigquant: input_features.v1 运行完成[0.007085s].
    [2019-02-13 20:41:47.729900] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-13 20:41:47.739535] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.740634] INFO: bigquant: general_feature_extractor.v7 运行完成[0.01077s].
    [2019-02-13 20:41:47.766689] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-13 20:41:47.773053] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.773947] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.007289s].
    [2019-02-13 20:41:47.790962] INFO: bigquant: join.v3 开始运行..
    [2019-02-13 20:41:47.798270] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.799239] INFO: bigquant: join.v3 运行完成[0.008285s].
    [2019-02-13 20:41:47.805784] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-13 20:41:47.811272] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.812077] INFO: bigquant: dropnan.v1 运行完成[0.0063s].
    [2019-02-13 20:41:47.814385] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-13 20:41:47.839293] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.840330] INFO: bigquant: instruments.v2 运行完成[0.025929s].
    [2019-02-13 20:41:47.849597] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-13 20:41:47.853792] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.854524] INFO: bigquant: general_feature_extractor.v7 运行完成[0.004943s].
    [2019-02-13 20:41:47.857230] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-13 20:41:47.862620] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.863430] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.006192s].
    [2019-02-13 20:41:47.866313] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-13 20:41:47.871364] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.872733] INFO: bigquant: dropnan.v1 运行完成[0.006412s].
    [2019-02-13 20:41:47.876678] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
    [2019-02-13 20:41:47.882081] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.883264] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.006583s].
    [2019-02-13 20:41:47.886686] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-13 20:41:47.890932] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.891870] INFO: bigquant: dropnan.v1 运行完成[0.005199s].
    [2019-02-13 20:41:47.958704] INFO: bigquant: cached.v3 开始运行..
    [2019-02-13 20:41:47.964891] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.965918] INFO: bigquant: cached.v3 运行完成[0.007245s].
    [2019-02-13 20:41:47.973313] INFO: bigquant: cached.v3 开始运行..
    [2019-02-13 20:41:47.979353] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.980276] INFO: bigquant: cached.v3 运行完成[0.006976s].
    [2019-02-13 20:41:47.983717] INFO: bigquant: cached.v3 开始运行..
    [2019-02-13 20:41:47.988952] INFO: bigquant: 命中缓存
    [2019-02-13 20:41:47.989799] INFO: bigquant: cached.v3 运行完成[0.006084s].
    [2019-02-13 20:41:47.994179] INFO: bigquant: cached.v3 开始运行..
    [[0.27836177 0.72163823]
     [0.2823822  0.7176178 ]]
    准确率
    0.49305548309002306
    预测涨结果涨
    67225
    预测跌结果跌
    27275
    预测涨结果跌
    70709
    预测跌结果涨
    26453
    
    
    查准率
    
    预测涨的准确率
    
    0.48737077152841213
    预测跌的准确率
    
    0.5076496426444312
    
    
    查全率
    
    涨的股票中预测准确率
    
    0.7176177971348663
    跌的股票中预测准确率
    
    0.27836177335075113
    
    [2019-02-13 20:41:56.761774] INFO: bigquant: cached.v3 运行完成[8.76753s].