复制链接
克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-228:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-234:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-575:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-228:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-235:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-457:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-330:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-337:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-235:input_data","from_node_id":"-228:data"},{"to_node_id":"-253:data1","from_node_id":"-234:data"},{"to_node_id":"-582:data1","from_node_id":"-253:data"},{"to_node_id":"-253:data2","from_node_id":"-235:data"},{"to_node_id":"-234:features","from_node_id":"-270:data"},{"to_node_id":"-457:training_ds","from_node_id":"-185:data_1"},{"to_node_id":"-575:features","from_node_id":"-570:data"},{"to_node_id":"-582:data2","from_node_id":"-575:data"},{"to_node_id":"-121:input_1","from_node_id":"-582:data"},{"to_node_id":"-185:input_1","from_node_id":"-297:data_1"},{"to_node_id":"-185:input_2","from_node_id":"-297:data_2"},{"to_node_id":"-185:input_3","from_node_id":"-297:data_3"},{"to_node_id":"-297:input_1","from_node_id":"-121:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-457:model"},{"to_node_id":"-347:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-330:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-347:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-337:input_data","from_node_id":"-330:data"},{"to_node_id":"-475:input_data","from_node_id":"-337:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-475:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2013-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\nin_csi300_0\nin_csi500_0\nin_sse50_0\nindustry_sw_level1_0\nst_status_0\n\n# 选股条件\ncond1=(market_cap_float_0>1000000000)&(market_cap_float_0<40000000000)&\\\n(close_0/adjust_factor_0>mean(close_0/adjust_factor_0, 5))&\\\n(volume_0>mean(volume_0, 5))&\\\n(amount_0>100000000)&\\\n(turn_0>0.08)&\\\n(list_days_0>60)&\\\n(mf_net_amount_main_0>60000000)\n\n# 排序选股\ncond2=rank(turn_0 * -1)*1.00\n\n# 进场条件\ncond3=1\n \n# 卖出条件\ncond4=1\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-228","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"300","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-228"},{"name":"features","node_id":"-228"}],"output_ports":[{"name":"data","node_id":"-228"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-234","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"industry_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-234"},{"name":"features","node_id":"-234"}],"output_ports":[{"name":"data","node_id":"-234"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-253","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-253"},{"name":"data2","node_id":"-253"}],"output_ports":[{"name":"data","node_id":"-253"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-235","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-235"},{"name":"features","node_id":"-235"}],"output_ports":[{"name":"data","node_id":"-235"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-270","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"concept\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-270"}],"output_ports":[{"name":"data","node_id":"-270"}],"cacheable":true,"seq_num":10,"comment":"获取股票概念,并匹配选中的概念","comment_collapsed":false},{"node_id":"-185","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n df1 = input_1.read_df()\n df2 = input_2.read_df()\n df3 = input_3.read_df()\n\n if len(df1.index.names) == 2:\n df1.index.names = [None, None]\n else:\n df1.index.names = [None]\n \n df = {'df1':df1,'df2':df2,'df3':df3}\n ds = DataSource.write_pickle(df)\n return Outputs(data_1=ds)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-185"},{"name":"input_2","node_id":"-185"},{"name":"input_3","node_id":"-185"}],"output_ports":[{"name":"data_1","node_id":"-185"},{"name":"data_2","node_id":"-185"},{"name":"data_3","node_id":"-185"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-570","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"suspended","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-570"}],"output_ports":[{"name":"data","node_id":"-570"}],"cacheable":true,"seq_num":6,"comment":"获取股票停牌数据","comment_collapsed":false},{"node_id":"-575","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"stock_status_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-575"},{"name":"features","node_id":"-575"}],"output_ports":[{"name":"data","node_id":"-575"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-582","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-582"},{"name":"data2","node_id":"-582"}],"output_ports":[{"name":"data","node_id":"-582"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-297","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n # 缺失值处理\n # if len(df)!=0:\n # df.dropna(inplace=True)\n \n # 选股条件\n if len(df)!=0:\n df_filter1 = df[df['cond1']>0]\n else:\n df_filter1 = df\n \n # 指标排序\n if len(df_filter1)!=0:\n df_filter2 = df_filter1.groupby('date').apply(lambda x:x.sort_values(by=['cond2'],ascending=True))\n else:\n df_filter2 = df_filter1\n \n #输出条件过滤股票池\n data_1 = DataSource.write_df(df_filter2)\n\n \n # 进场条件\n if len(df)!=0:\n df_buy = df[df['cond3']>0]\n else:\n df_buy = df\n # 输出满足进场条件的股票池\n data_2 = DataSource.write_df(df_buy)\n\n \n # 出场条件\n if len(df)!=0:\n df_sell = df[df['cond4']>0]\n else:\n df_sell = df\n # 输出满足出场条件的股票池\n data_3 = DataSource.write_df(df_sell) \n \n return Outputs(data_1=data_1, data_2=data_2, data_3=data_3)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-297"},{"name":"input_2","node_id":"-297"},{"name":"input_3","node_id":"-297"}],"output_ports":[{"name":"data_1","node_id":"-297"},{"name":"data_2","node_id":"-297"},{"name":"data_3","node_id":"-297"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-121","module_id":"BigQuantSpace.stockpool_select.stockpool_select-v6","parameters":[{"name":"self_instruments","value":"[]","type":"Literal","bound_global_parameter":null},{"name":"input_concepts","value":"[]","type":"Literal","bound_global_parameter":null},{"name":"input_industrys","value":"[360000,710000,220000,460000,370000,330000,340000,720000,240000,630000,280000,420000,510000,640000,610000,620000,650000,230000,410000,350000,490000,110000,210000,480000,730000,450000,270000,430000]","type":"Literal","bound_global_parameter":null},{"name":"input_indexs","value":"['中小板']","type":"Literal","bound_global_parameter":null},{"name":"input_st","value":"过滤","type":"Literal","bound_global_parameter":null},{"name":"input_suspend","value":"过滤","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-121"}],"output_ports":[{"name":"data","node_id":"-121"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-457","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"30","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"280","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"21","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-457"},{"name":"features","node_id":"-457"},{"name":"test_ds","node_id":"-457"},{"name":"base_model","node_id":"-457"}],"output_ports":[{"name":"model","node_id":"-457"},{"name":"feature_gains","node_id":"-457"},{"name":"m_lazy_run","node_id":"-457"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-347","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0001, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 1\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n \n #---------------------------START:止赢止损模块(含建仓期)--------------------\n # 新建当日止赢止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n stopwin_stock=[]\n stoploss_stock = [] \n today = data.current_dt.strftime('%Y-%m-%d')\n positions_stop={e.symbol:p.cost_basis \n for e,p in context.portfolio.positions.items()}\n if len(positions_stop)>0:\n for instrument in positions_stop.keys():\n # 获取股票买入成本价stock_cost和现价stock_market_price\n stock_cost=positions_stop[instrument] \n stock_market_price=data.current(context.symbol(instrument),'price') \n # 赚3元且为可交易状态就止盈\n if stock_market_price-stock_cost > 1.2 and data.can_trade(context.symbol(instrument)) and not context.has_unfinished_sell_order(instrument):\n context.order_target_percent(context.symbol(instrument),0) \n stopwin_stock.append(instrument)\n # 亏10%并且为可交易状态就止损\n if stock_market_price/stock_cost-1 <= -0.05 and data.can_trade(context.symbol(instrument)) and not context.has_unfinished_sell_order(instrument): \n context.order_target_percent(context.symbol(instrument),0) \n stoploss_stock.append(instrument)\n if len(stopwin_stock)>0:\n print(today,'止盈股票列表',stopwin_stock)\n if len(stoploss_stock)>0:\n print(today,'止损股票列表',stoploss_stock)\n #--------------------------END: 止赢止损模块-----------------------------\n \n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"20000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-347"},{"name":"options_data","node_id":"-347"},{"name":"history_ds","node_id":"-347"},{"name":"benchmark_ds","node_id":"-347"},{"name":"trading_calendar","node_id":"-347"}],"output_ports":[{"name":"raw_perf","node_id":"-347"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-05-21","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":13,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"-330","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-330"},{"name":"features","node_id":"-330"}],"output_ports":[{"name":"data","node_id":"-330"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-337","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-337"},{"name":"features","node_id":"-337"}],"output_ports":[{"name":"data","node_id":"-337"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-475","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-475"},{"name":"features","node_id":"-475"}],"output_ports":[{"name":"data","node_id":"-475"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='435,-216,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='914,-280,200,200'/><node_position Node='-228' Position='488.4761962890625,-27.85712242126465,200,200'/><node_position Node='-234' Position='156,59,200,200'/><node_position Node='-253' Position='223.30157470703125,201.6984100341797,200,200'/><node_position Node='-235' Position='595,100,200,200'/><node_position Node='-270' Position='98,-142,200,200'/><node_position Node='-185' Position='425,597,200,200'/><node_position Node='-570' Position='1018,-34,200,200'/><node_position Node='-575' Position='961,132,200,200'/><node_position Node='-582' Position='400,297,200,200'/><node_position Node='-297' Position='464,498,200,200'/><node_position Node='-121' Position='432,400,200,200'/><node_position Node='-457' Position='589,701,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='796.6984252929688,803,200,200'/><node_position Node='-347' Position='975.3016357421875,914,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1426,-56,200,200'/><node_position Node='-330' Position='1361,125,200,200'/><node_position Node='-337' Position='1322.3016357421875,273,200,200'/><node_position Node='-475' Position='1284,433,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [4]:
    # 本代码由可视化策略环境自动生成 2022年5月25日 24:19
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m22_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        df = input_1.read_df()
        # 缺失值处理
        # if len(df)!=0:
        #     df.dropna(inplace=True)
            
        # 选股条件
        if len(df)!=0:
            df_filter1 = df[df['cond1']>0]
        else:
            df_filter1 = df
        
        # 指标排序
        if len(df_filter1)!=0:
            df_filter2 = df_filter1.groupby('date').apply(lambda x:x.sort_values(by=['cond2'],ascending=True))
        else:
            df_filter2 = df_filter1
        
        #输出条件过滤股票池
        data_1 = DataSource.write_df(df_filter2)
    
        
        # 进场条件
        if len(df)!=0:
            df_buy = df[df['cond3']>0]
        else:
            df_buy = df
        # 输出满足进场条件的股票池
        data_2 = DataSource.write_df(df_buy)
    
        
        # 出场条件
        if len(df)!=0:
            df_sell = df[df['cond4']>0]
        else:
            df_sell = df
        # 输出满足出场条件的股票池
        data_3 = DataSource.write_df(df_sell)    
        
        return Outputs(data_1=data_1, data_2=data_2, data_3=data_3)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m22_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m17_run_bigquant_run(input_1, input_2, input_3):
        df1 = input_1.read_df()
        df2 = input_2.read_df()
        df3 = input_3.read_df()
    
        if len(df1.index.names) == 2:
            df1.index.names = [None, None]
        else:
            df1.index.names = [None]
        
        df = {'df1':df1,'df2':df2,'df3':df3}
        ds = DataSource.write_pickle(df)
        return Outputs(data_1=ds)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m17_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m12_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0001, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 1
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 1
        context.options['hold_days'] = 1
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m12_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
       
        #---------------------------START:止赢止损模块(含建仓期)--------------------
        # 新建当日止赢止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断
        stopwin_stock=[]
        stoploss_stock = []   
        today = data.current_dt.strftime('%Y-%m-%d')
        positions_stop={e.symbol:p.cost_basis 
        for e,p in context.portfolio.positions.items()}
        if len(positions_stop)>0:
            for instrument in positions_stop.keys():
                # 获取股票买入成本价stock_cost和现价stock_market_price
                stock_cost=positions_stop[instrument]  
                stock_market_price=data.current(context.symbol(instrument),'price')  
                # 赚3元且为可交易状态就止盈
                if stock_market_price-stock_cost > 1.2 and data.can_trade(context.symbol(instrument)) and not context.has_unfinished_sell_order(instrument):
                    context.order_target_percent(context.symbol(instrument),0)      
                    stopwin_stock.append(instrument)
                # 亏10%并且为可交易状态就止损
                if stock_market_price/stock_cost-1 <= -0.05 and data.can_trade(context.symbol(instrument)) and not context.has_unfinished_sell_order(instrument):   
                    context.order_target_percent(context.symbol(instrument),0)     
                    stoploss_stock.append(instrument)
            if len(stopwin_stock)>0:
                print(today,'止盈股票列表',stopwin_stock)
            if len(stoploss_stock)>0:
                print(today,'止损股票列表',stoploss_stock)
        #--------------------------END: 止赢止损模块-----------------------------
        
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m12_prepare_bigquant_run(context):
        pass
    
    
    m1 = M.instruments.v2(
        start_date='2013-01-01',
        end_date='2019-12-31',
        market='CN_STOCK_A',
        instrument_list=''
    )
    
    m3 = M.input_features.v1(
        features="""
    in_csi300_0
    in_csi500_0
    in_sse50_0
    industry_sw_level1_0
    st_status_0
    
    # 选股条件
    cond1=(market_cap_float_0>1000000000)&(market_cap_float_0<40000000000)&\
    (close_0/adjust_factor_0>mean(close_0/adjust_factor_0, 5))&\
    (volume_0>mean(volume_0, 5))&\
    (amount_0>100000000)&\
    (turn_0>0.08)&\
    (list_days_0>60)&\
    (mf_net_amount_main_0>60000000)
    
    # 排序选股
    cond2=rank(turn_0 * -1)*1.00
    
    # 进场条件
    cond3=1
                  
    # 卖出条件
    cond4=1
    """
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=300
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m10 = M.input_features.v1(
        features="""concept
    """
    )
    
    m5 = M.use_datasource.v1(
        instruments=m1.data,
        features=m10.data,
        datasource_id='industry_CN_STOCK_A',
        start_date='',
        end_date=''
    )
    
    m7 = M.join.v3(
        data1=m5.data,
        data2=m16.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m6 = M.input_features.v1(
        features='suspended'
    )
    
    m19 = M.use_datasource.v1(
        instruments=m1.data,
        features=m6.data,
        datasource_id='stock_status_CN_STOCK_A',
        start_date='',
        end_date=''
    )
    
    m20 = M.join.v3(
        data1=m7.data,
        data2=m19.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m2 = M.stockpool_select.v6(
        input_1=m20.data,
        self_instruments=[],
        input_concepts=[],
        input_industrys=[360000,710000,220000,460000,370000,330000,340000,720000,240000,630000,280000,420000,510000,640000,610000,620000,650000,230000,410000,350000,490000,110000,210000,480000,730000,450000,270000,430000],
        input_indexs=['中小板'],
        input_st='过滤',
        input_suspend='过滤'
    )
    
    m22 = M.cached.v3(
        input_1=m2.data,
        run=m22_run_bigquant_run,
        post_run=m22_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m17 = M.cached.v3(
        input_1=m22.data_1,
        input_2=m22.data_2,
        input_3=m22.data_3,
        run=m17_run_bigquant_run,
        post_run=m17_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m9 = M.stock_ranker_train.v6(
        training_ds=m17.data_1,
        features=m3.data,
        learning_algorithm='排序',
        number_of_leaves=30,
        minimum_docs_per_leaf=280,
        number_of_trees=21,
        learning_rate=0.1,
        max_bins=1023,
        feature_fraction=1,
        data_row_fraction=1,
        plot_charts=True,
        ndcg_discount_base=1,
        m_lazy_run=False
    )
    
    m13 = M.instruments.v2(
        start_date='2022-01-01',
        end_date='2022-05-21',
        market='CN_STOCK_A',
        instrument_list=''
    )
    
    m14 = M.general_feature_extractor.v7(
        instruments=m13.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=0
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m14.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m21 = M.dropnan.v2(
        input_data=m18.data
    )
    
    m11 = M.stock_ranker_predict.v5(
        model=m9.model,
        data=m21.data,
        m_lazy_run=False
    )
    
    m12 = M.trade.v4(
        instruments=m13.data,
        options_data=m11.predictions,
        start_date='',
        end_date='',
        initialize=m12_initialize_bigquant_run,
        handle_data=m12_handle_data_bigquant_run,
        prepare=m12_prepare_bigquant_run,
        volume_limit=0,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=20000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.HIX'
    )
    
    ---------------------------------------------------------------------------
    HDF5ExtError                              Traceback (most recent call last)
    <ipython-input-4-7a92dc4f7c7f> in <module>
        279 )
        280 
    --> 281 m9 = M.stock_ranker_train.v6(
        282     training_ds=m17.data_1,
        283     features=m3.data,
    
    HDF5ExtError: HDF5 error back trace
    
      File "H5F.c", line 509, in H5Fopen
        unable to open file
      File "H5Fint.c", line 1400, in H5F__open
        unable to open file
      File "H5Fint.c", line 1700, in H5F_open
        unable to read superblock
      File "H5Fsuper.c", line 411, in H5F__super_read
        file signature not found
    
    End of HDF5 error back trace
    
    Unable to open/create file '/var/app/data/bigquant/datasource/user/v3/d/d9/dd9a2886e8e040a9912046292f949380T'