{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-228:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-234:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-575:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-228:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-235:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-457:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-330:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-337:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-235:input_data","from_node_id":"-228:data"},{"to_node_id":"-253:data1","from_node_id":"-234:data"},{"to_node_id":"-582:data1","from_node_id":"-253:data"},{"to_node_id":"-253:data2","from_node_id":"-235:data"},{"to_node_id":"-234:features","from_node_id":"-270:data"},{"to_node_id":"-457:training_ds","from_node_id":"-185:data_1"},{"to_node_id":"-575:features","from_node_id":"-570:data"},{"to_node_id":"-582:data2","from_node_id":"-575:data"},{"to_node_id":"-121:input_1","from_node_id":"-582:data"},{"to_node_id":"-185:input_1","from_node_id":"-297:data_1"},{"to_node_id":"-185:input_2","from_node_id":"-297:data_2"},{"to_node_id":"-185:input_3","from_node_id":"-297:data_3"},{"to_node_id":"-297:input_1","from_node_id":"-121:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-457:model"},{"to_node_id":"-347:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-330:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-347:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-337:input_data","from_node_id":"-330:data"},{"to_node_id":"-475:input_data","from_node_id":"-337:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-475:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2013-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\nin_csi300_0\nin_csi500_0\nin_sse50_0\nindustry_sw_level1_0\nst_status_0\n\n# 选股条件\ncond1=(market_cap_float_0>1000000000)&(market_cap_float_0<40000000000)&\\\n(close_0/adjust_factor_0>mean(close_0/adjust_factor_0, 5))&\\\n(volume_0>mean(volume_0, 5))&\\\n(amount_0>100000000)&\\\n(turn_0>0.08)&\\\n(list_days_0>60)&\\\n(mf_net_amount_main_0>60000000)\n\n# 排序选股\ncond2=rank(turn_0 * -1)*1.00\n\n# 进场条件\ncond3=1\n \n# 卖出条件\ncond4=1\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-228","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"300","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-228"},{"name":"features","node_id":"-228"}],"output_ports":[{"name":"data","node_id":"-228"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-234","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"industry_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-234"},{"name":"features","node_id":"-234"}],"output_ports":[{"name":"data","node_id":"-234"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-253","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-253"},{"name":"data2","node_id":"-253"}],"output_ports":[{"name":"data","node_id":"-253"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-235","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-235"},{"name":"features","node_id":"-235"}],"output_ports":[{"name":"data","node_id":"-235"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-270","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"concept\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-270"}],"output_ports":[{"name":"data","node_id":"-270"}],"cacheable":true,"seq_num":10,"comment":"获取股票概念,并匹配选中的概念","comment_collapsed":false},{"node_id":"-185","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n df1 = input_1.read_df()\n df2 = input_2.read_df()\n df3 = input_3.read_df()\n\n if len(df1.index.names) == 2:\n df1.index.names = [None, None]\n else:\n df1.index.names = [None]\n \n df = {'df1':df1,'df2':df2,'df3':df3}\n ds = DataSource.write_pickle(df)\n return Outputs(data_1=ds)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-185"},{"name":"input_2","node_id":"-185"},{"name":"input_3","node_id":"-185"}],"output_ports":[{"name":"data_1","node_id":"-185"},{"name":"data_2","node_id":"-185"},{"name":"data_3","node_id":"-185"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-570","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"suspended","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-570"}],"output_ports":[{"name":"data","node_id":"-570"}],"cacheable":true,"seq_num":6,"comment":"获取股票停牌数据","comment_collapsed":false},{"node_id":"-575","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"stock_status_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-575"},{"name":"features","node_id":"-575"}],"output_ports":[{"name":"data","node_id":"-575"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-582","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-582"},{"name":"data2","node_id":"-582"}],"output_ports":[{"name":"data","node_id":"-582"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-297","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n # 缺失值处理\n # if len(df)!=0:\n # df.dropna(inplace=True)\n \n # 选股条件\n if len(df)!=0:\n df_filter1 = df[df['cond1']>0]\n else:\n df_filter1 = df\n \n # 指标排序\n if len(df_filter1)!=0:\n df_filter2 = df_filter1.groupby('date').apply(lambda x:x.sort_values(by=['cond2'],ascending=True))\n else:\n df_filter2 = df_filter1\n \n #输出条件过滤股票池\n data_1 = DataSource.write_df(df_filter2)\n\n \n # 进场条件\n if len(df)!=0:\n df_buy = df[df['cond3']>0]\n else:\n df_buy = df\n # 输出满足进场条件的股票池\n data_2 = DataSource.write_df(df_buy)\n\n \n # 出场条件\n if len(df)!=0:\n df_sell = df[df['cond4']>0]\n else:\n df_sell = df\n # 输出满足出场条件的股票池\n data_3 = DataSource.write_df(df_sell) \n \n return Outputs(data_1=data_1, data_2=data_2, data_3=data_3)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-297"},{"name":"input_2","node_id":"-297"},{"name":"input_3","node_id":"-297"}],"output_ports":[{"name":"data_1","node_id":"-297"},{"name":"data_2","node_id":"-297"},{"name":"data_3","node_id":"-297"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-121","module_id":"BigQuantSpace.stockpool_select.stockpool_select-v6","parameters":[{"name":"self_instruments","value":"[]","type":"Literal","bound_global_parameter":null},{"name":"input_concepts","value":"[]","type":"Literal","bound_global_parameter":null},{"name":"input_industrys","value":"[360000,710000,220000,460000,370000,330000,340000,720000,240000,630000,280000,420000,510000,640000,610000,620000,650000,230000,410000,350000,490000,110000,210000,480000,730000,450000,270000,430000]","type":"Literal","bound_global_parameter":null},{"name":"input_indexs","value":"['中小板']","type":"Literal","bound_global_parameter":null},{"name":"input_st","value":"过滤","type":"Literal","bound_global_parameter":null},{"name":"input_suspend","value":"过滤","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-121"}],"output_ports":[{"name":"data","node_id":"-121"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-457","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"30","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"280","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"21","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-457"},{"name":"features","node_id":"-457"},{"name":"test_ds","node_id":"-457"},{"name":"base_model","node_id":"-457"}],"output_ports":[{"name":"model","node_id":"-457"},{"name":"feature_gains","node_id":"-457"},{"name":"m_lazy_run","node_id":"-457"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-347","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0001, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 1\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n \n #---------------------------START:止赢止损模块(含建仓期)--------------------\n # 新建当日止赢止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n stopwin_stock=[]\n stoploss_stock = [] \n today = data.current_dt.strftime('%Y-%m-%d')\n positions_stop={e.symbol:p.cost_basis \n for e,p in context.portfolio.positions.items()}\n if len(positions_stop)>0:\n for instrument in positions_stop.keys():\n # 获取股票买入成本价stock_cost和现价stock_market_price\n stock_cost=positions_stop[instrument] \n stock_market_price=data.current(context.symbol(instrument),'price') \n # 赚3元且为可交易状态就止盈\n if stock_market_price-stock_cost > 1.2 and data.can_trade(context.symbol(instrument)) and not context.has_unfinished_sell_order(instrument):\n context.order_target_percent(context.symbol(instrument),0) \n stopwin_stock.append(instrument)\n # 亏10%并且为可交易状态就止损\n if stock_market_price/stock_cost-1 <= -0.05 and data.can_trade(context.symbol(instrument)) and not context.has_unfinished_sell_order(instrument): \n context.order_target_percent(context.symbol(instrument),0) \n stoploss_stock.append(instrument)\n if len(stopwin_stock)>0:\n print(today,'止盈股票列表',stopwin_stock)\n if len(stoploss_stock)>0:\n print(today,'止损股票列表',stoploss_stock)\n #--------------------------END: 止赢止损模块-----------------------------\n \n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"20000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-347"},{"name":"options_data","node_id":"-347"},{"name":"history_ds","node_id":"-347"},{"name":"benchmark_ds","node_id":"-347"},{"name":"trading_calendar","node_id":"-347"}],"output_ports":[{"name":"raw_perf","node_id":"-347"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-05-21","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":13,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"-330","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-330"},{"name":"features","node_id":"-330"}],"output_ports":[{"name":"data","node_id":"-330"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-337","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-337"},{"name":"features","node_id":"-337"}],"output_ports":[{"name":"data","node_id":"-337"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-475","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-475"},{"name":"features","node_id":"-475"}],"output_ports":[{"name":"data","node_id":"-475"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='435,-216,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='914,-280,200,200'/><node_position Node='-228' Position='488.4761962890625,-27.85712242126465,200,200'/><node_position Node='-234' Position='156,59,200,200'/><node_position Node='-253' Position='223.30157470703125,201.6984100341797,200,200'/><node_position Node='-235' Position='595,100,200,200'/><node_position Node='-270' Position='98,-142,200,200'/><node_position Node='-185' Position='425,597,200,200'/><node_position Node='-570' Position='1018,-34,200,200'/><node_position Node='-575' Position='961,132,200,200'/><node_position Node='-582' Position='400,297,200,200'/><node_position Node='-297' Position='464,498,200,200'/><node_position Node='-121' Position='432,400,200,200'/><node_position Node='-457' Position='589,701,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='796.6984252929688,803,200,200'/><node_position Node='-347' Position='975.3016357421875,914,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1426,-56,200,200'/><node_position Node='-330' Position='1361,125,200,200'/><node_position Node='-337' Position='1322.3016357421875,273,200,200'/><node_position Node='-475' Position='1284,433,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-05-25 00:04:32.916104] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-25 00:04:32.923387] INFO: moduleinvoker: 命中缓存
[2022-05-25 00:04:32.924898] INFO: moduleinvoker: instruments.v2 运行完成[0.008802s].
[2022-05-25 00:04:32.928759] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-25 00:04:32.935086] INFO: moduleinvoker: 命中缓存
[2022-05-25 00:04:32.938966] INFO: moduleinvoker: input_features.v1 运行完成[0.010206s].
[2022-05-25 00:04:32.951542] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-25 00:04:32.961819] INFO: moduleinvoker: 命中缓存
[2022-05-25 00:04:32.963471] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.01194s].
[2022-05-25 00:04:32.972121] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-25 00:04:32.986897] INFO: moduleinvoker: 命中缓存
[2022-05-25 00:04:32.988539] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.016421s].
[2022-05-25 00:04:32.994126] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-25 00:04:33.003071] INFO: moduleinvoker: 命中缓存
[2022-05-25 00:04:33.004921] INFO: moduleinvoker: input_features.v1 运行完成[0.010798s].
[2022-05-25 00:04:33.010381] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-05-25 00:04:33.017929] INFO: moduleinvoker: 命中缓存
[2022-05-25 00:04:33.019794] INFO: moduleinvoker: use_datasource.v1 运行完成[0.00942s].
[2022-05-25 00:04:33.028422] INFO: moduleinvoker: join.v3 开始运行..
[2022-05-25 00:04:33.041549] INFO: moduleinvoker: 命中缓存
[2022-05-25 00:04:33.043506] INFO: moduleinvoker: join.v3 运行完成[0.015082s].
[2022-05-25 00:04:33.047743] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-25 00:04:33.059197] INFO: moduleinvoker: 命中缓存
[2022-05-25 00:04:33.061479] INFO: moduleinvoker: input_features.v1 运行完成[0.013728s].
[2022-05-25 00:04:33.067002] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-05-25 00:04:34.537965] INFO: moduleinvoker: use_datasource.v1 运行完成[1.470957s].
[2022-05-25 00:04:34.547146] INFO: moduleinvoker: join.v3 开始运行..
[2022-05-25 00:04:43.146068] INFO: join: /y_2012, 行数=0/0, 耗时=1.121147s
[2022-05-25 00:04:46.731842] INFO: join: /y_2013, 行数=564168/564168, 耗时=3.584043s
[2022-05-25 00:04:50.463881] INFO: join: /y_2014, 行数=569948/569948, 耗时=3.718822s
[2022-05-25 00:04:54.376072] INFO: join: /y_2015, 行数=569698/569698, 耗时=3.901537s
[2022-05-25 00:04:58.615365] INFO: join: /y_2016, 行数=641546/641546, 耗时=4.23082s
[2022-05-25 00:05:04.064985] INFO: join: /y_2017, 行数=743233/743233, 耗时=5.41686s
[2022-05-25 00:05:09.909016] INFO: join: /y_2018, 行数=816987/816987, 耗时=5.832998s
[2022-05-25 00:05:15.596323] INFO: join: /y_2019, 行数=884867/884867, 耗时=5.669565s
[2022-05-25 00:05:15.772192] INFO: join: 最终行数: 4790447
[2022-05-25 00:05:15.808333] INFO: moduleinvoker: join.v3 运行完成[41.261187s].
[2022-05-25 00:05:15.831925] INFO: moduleinvoker: stockpool_select.v6 开始运行..
[2022-05-25 00:15:27.001073] INFO: moduleinvoker: stockpool_select.v6 运行完成[611.169323s].
[2022-05-25 00:15:27.020441] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-25 00:15:36.084115] INFO: moduleinvoker: cached.v3 运行完成[9.063661s].
[2022-05-25 00:15:36.101754] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-25 00:15:40.425327] INFO: moduleinvoker: cached.v3 运行完成[4.323595s].
[2022-05-25 00:15:40.444813] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-05-25 00:15:40.519931] ERROR: moduleinvoker: module name: cached, module version: v2, trackeback: tables.exceptions.HDF5ExtError: HDF5 error back trace
File "H5F.c", line 509, in H5Fopen
unable to open file
File "H5Fint.c", line 1400, in H5F__open
unable to open file
File "H5Fint.c", line 1700, in H5F_open
unable to read superblock
File "H5Fsuper.c", line 411, in H5F__super_read
file signature not found
End of HDF5 error back trace
Unable to open/create file '/var/app/data/bigquant/datasource/user/v3/d/d9/dd9a2886e8e040a9912046292f949380T'
[2022-05-25 00:15:40.539532] ERROR: moduleinvoker: module name: stock_ranker_train, module version: v6, trackeback: tables.exceptions.HDF5ExtError: HDF5 error back trace
File "H5F.c", line 509, in H5Fopen
unable to open file
File "H5Fint.c", line 1400, in H5F__open
unable to open file
File "H5Fint.c", line 1700, in H5F_open
unable to read superblock
File "H5Fsuper.c", line 411, in H5F__super_read
file signature not found
End of HDF5 error back trace
Unable to open/create file '/var/app/data/bigquant/datasource/user/v3/d/d9/dd9a2886e8e040a9912046292f949380T'
---------------------------------------------------------------------------
HDF5ExtError Traceback (most recent call last)
<ipython-input-4-7a92dc4f7c7f> in <module>
279 )
280
--> 281 m9 = M.stock_ranker_train.v6(
282 training_ds=m17.data_1,
283 features=m3.data,
HDF5ExtError: HDF5 error back trace
File "H5F.c", line 509, in H5Fopen
unable to open file
File "H5Fint.c", line 1400, in H5F__open
unable to open file
File "H5Fint.c", line 1700, in H5F_open
unable to read superblock
File "H5Fsuper.c", line 411, in H5F__super_read
file signature not found
End of HDF5 error back trace
Unable to open/create file '/var/app/data/bigquant/datasource/user/v3/d/d9/dd9a2886e8e040a9912046292f949380T'