# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m8_run_bigquant_run(input_1, input_index):
# 示例代码如下。在这里编写您的代码
start_date=input_1.read_pickle()['start_date']
end_date=input_1.read_pickle()['end_date']
df = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[input_index],start_date=start_date,end_date=end_date,fields=['close'])
data_1 = DataSource.write_df(df)
return Outputs(data_1=data_1, data_2=None, data_3=None)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m8_post_run_bigquant_run(outputs):
return outputs
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m22_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
df = input_1.read_df()
# 缺失值处理
# if len(df)!=0:
# df.dropna(inplace=True)
# 选股条件
if len(df)!=0:
df_filter1 = df[df['cond1']>0]
else:
df_filter1 = df
# 指标排序
if len(df_filter1)!=0:
df_filter2 = df_filter1.groupby('date').apply(lambda x:x.sort_values(by=['cond2'],ascending=True))
else:
df_filter2 = df_filter1
#输出条件过滤股票池
data_1 = DataSource.write_df(df_filter2)
# 进场条件
if len(df)!=0:
df_buy = df[df['cond3']>0]
else:
df_buy = df
# 输出满足进场条件的股票池
data_2 = DataSource.write_df(df_buy)
# 出场条件
if len(df)!=0:
df_sell = df[df['cond4']>0]
else:
df_sell = df
# 输出满足出场条件的股票池
data_3 = DataSource.write_df(df_sell)
return Outputs(data_1=data_1, data_2=data_2, data_3=data_3)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m22_post_run_bigquant_run(outputs):
return outputs
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m17_run_bigquant_run(input_1, input_2, input_3):
df1 = input_1.read_df()
df2 = input_2.read_df()
df3 = input_3.read_df()
if len(df1.index.names) == 2:
df1.index.names = [None, None]
else:
df1.index.names = [None]
df = {'df1':df1,'df2':df2,'df3':df3}
ds = DataSource.write_pickle(df)
return Outputs(data_1=ds)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m17_post_run_bigquant_run(outputs):
return outputs
def prepare_index_data(context):
"""准备指数数据"""
if context.market_risk_conf != []:
if len(context.market_risk_conf) == 1:
index_code = context.market_risk_conf[0]['params']['index_code']
start_date = '2005-01-01'
end_date = context.end_date
index_data = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code], start_date=start_date, end_date=end_date).set_index('date')
if context.market_risk_conf[0]['method'] == 'market_ma_stoploss':
ma_periods = int(context.market_risk_conf[0]['params']['ma_periods'])
index_data['ma_%s'%ma_periods] = index_data['close'].rolling(ma_periods).mean()
index_data['signal'] = np.where(index_data['close'] > index_data['ma_%s'%ma_periods], 'long', 'short')
elif context.market_risk_conf[0]['method'] == 'market_fallrange_stoploss':
days = context.market_risk_conf[0]['params']['days']
fallrange = context.market_risk_conf[0]['params']['fallrange']
index_data['signal'] = np.where(index_data['close']/index_data['close'].shift(days)-1 <= fallrange, 'long', 'short')
context.index_signal_data = index_data
if len(context.market_risk_conf) == 2:
start_date = '2005-01-01'
end_date = context.end_date
if context.market_risk_conf[0]['method'] == 'market_ma_stoploss':
index_code_1 = context.market_risk_conf[0]['params']['index_code']
index_data_1 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_1], start_date=start_date, end_date=end_date).set_index('date')
ma_periods = int(context.market_risk_conf[0]['params']['ma_periods'])
index_code_2 = context.market_risk_conf[1]['params']['index_code']
index_data_2 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_2], start_date=start_date, end_date=end_date).set_index('date')
days = context.market_risk_conf[1]['params']['days']
fallrange = context.market_risk_conf[1]['params']['fallrange']
else:
index_code_1 = context.market_risk_conf[1]['params']['index_code']
index_data_1 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_1], start_date=start_date, end_date=end_date).set_index('date')
ma_periods = int(context.market_risk_conf[1]['params']['ma_periods'])
index_code_2 = context.market_risk_conf[0]['params']['index_code']
index_data_2 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_2], start_date=start_date, end_date=end_date).set_index('date')
days = context.market_risk_conf[0]['params']['days']
fallrange = context.market_risk_conf[0]['params']['fallrange']
index_data_1['ma_%s'%ma_periods] = index_data_1['close'].rolling(ma_periods).mean()
index_data_1['signal_1'] = np.where(index_data_1['close'] > index_data_1['ma_%s'%ma_periods], 1, 0)
signal_1 = index_data_1[['signal_1']].reset_index()
index_data_2['signal_2'] = np.where(index_data_2['close']/index_data_2['close'].shift(days)-1 <= fallrange, 1, 0)
signal_2 = index_data_2[['signal_2']].reset_index()
signal = pd.merge(signal_1,signal_2).set_index('date')
signal['signal_sum'] = signal['signal_1'] + signal['signal_2']
signal['signal'] = np.where(signal['signal_sum']>0,'long','short')
context.index_signal_data = signal
else:
context.index_signal_data = None
def m4_initialize_bigquant_run(context):
context.set_commission(PerOrder(buy_cost=0.003, sell_cost=0.004, min_cost=5))
context.selected_stock = []
context.trade_mode = '轮动'
if context.trade_mode == '轮动':
context.buy_frequency = 1
context.sell_frequency = 1
context.rebalance_periods = 1 # 调仓周期
context.max_stock_count = 5 # 最大持仓股票数量
context.order_weight_method = 'equal_weight' # 买入方式
context.is_sell_willbuy_stock = False # 卖出欲买进股票
else:
# 买入条件参数
context.stock_select_frequency = 1 # 选股频率
context.order_weight_method = 'equal_weight' # 买入方式
context.buy_frequency = 2 # 买入频率
context.can_duplication_buy = False # 是否可重复买入
context.max_stock_count = 5 # 最大持仓股票数量
context.max_stock_weight = 1 # 个股最大持仓比重
# 卖出条件参数
context.sell_frequency = 10 # 卖出频率
context.is_sell_willbuy_stock = False # 卖出欲买进股票
# 风控参数
context.stock_risk_conf = [{'method':'stock_percent_stopwin', 'params':{'percent': 0.2}}, {'method':'stock_percent_stoploss', 'params':{'percent': 0.1}}] # 支持多选 无:[]
context.strategy_risk_conf = [] # 支持多选 无:[]
context.market_risk_conf = [] # 支持多选, 无: []
prepare_index_data(context)
slippage_type = 'price'
from zipline.finance.slippage import SlippageModel
class FixedPriceSlippage(SlippageModel):
# 指定初始化函数
def __init__(self, spreads, price_field_buy, price_field_sell):
# 存储spread的字典,用股票代码作为key
self.spreads = spreads
self._price_field_buy = price_field_buy
self._price_field_sell = price_field_sell
def process_order(self, data, order, bar_volume=0, trigger_check_price=0):
if order.limit is None:
price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell
price_base = data.current(order.asset, price_field)
if slippage_type == 'price':
price = price_base + (self.spreads / 2) if order.amount > 0 else price_base - (self.spreads / 2)
else:
price = price_base * (1.0 + self.spreads / 2) if order.amount > 0 else price_base * (1.0 - self.spreads / 2)
else:
price = order.limit
# 返回希望成交的价格和数量
return (price, order.amount)
# 设置price_field
fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='open', spreads=0.02)
context.set_slippage(us_equities=fix_slippage)
#--------------------------------------------------------------------
# 卖出条件
#--------------------------------------------------------------------
def sell_action(context, data):
date = data.current_dt.strftime('%Y-%m-%d')
hit_stop_stock = context.stock_hit_stop
try:
today_enter_stock = context.enter_daily_df.loc[date]
except KeyError as e:
today_enter_stock = []
try:
today_exit_stock = context.exit_daily_df.loc[date]
except KeyError as e:
today_exit_stock = []
target_stock_to_buy = [i for i in context.selected_stock if i in today_enter_stock ]
stock_hold_now = [equity.symbol for equity in context.portfolio.positions] # 当前持仓股票
if context.trading_day_index % context.sell_frequency == 0:
stock_to_sell = [i for i in stock_hold_now if i in today_exit_stock] # 要卖出的股票
stock_buy_and_sell = [i for i in stock_to_sell if i in target_stock_to_buy]
if context.is_sell_willbuy_stock == False: # 要买入的股票不卖出,但该票也不再买入
stock_to_sell.extend(hit_stop_stock) # 将触发个股风控的股票融入到卖出票池
stock_to_sell = [i for i in stock_to_sell if i not in stock_buy_and_sell] # 进行更新而已
elif context.is_sell_willbuy_stock == True: # 要买入的股票依然要卖出,该票不再买入
stock_to_sell.extend(hit_stop_stock)
# 买入时需要过滤的股票
context.cannot_buy_stock = stock_buy_and_sell
for stock in stock_to_sell:
if data.can_trade(context.symbol(stock)):
context.order_target_percent(context.symbol(stock), 0)
s = context.symbol(stock)
del context.portfolio.positions[s]
#--------------------------------------------------------------------
# 买入条件
#--------------------------------------------------------------------
def buy_action(context, data):
date = data.current_dt.strftime('%Y-%m-%d')
try:
today_enter_stock = context.enter_daily_df.loc[date]
except KeyError as e:
today_enter_stock = []
try:
today_exit_stock = context.exit_daily_df.loc[date]
except KeyError as e:
today_exit_stock = []
target_stock_to_buy = [i for i in context.selected_stock if i in today_enter_stock]
target_stock_to_buy = [s for s in target_stock_to_buy if s not in context.cannot_buy_stock] # 进行更新,不能买入的股票要过滤
stock_hold_now = [equity.symbol for equity in context.portfolio.positions] # 当前持仓股票
# 确定股票权重
if context.order_weight_method == 'equal_weight':
equal_weight = 1 / context.max_stock_count
portfolio_value = context.portfolio.portfolio_value
position_current_value = {pos.sid: pos.amount* pos.last_sale_price for i,pos in context.portfolio.positions.items()}
# 买入
if context.trading_day_index % context.buy_frequency == 0:
if len(stock_hold_now) >= context.max_stock_count:
return
today_buy_count = 0
if context.trade_mode == '轮动':
for s in target_stock_to_buy:
if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量
break
if data.can_trade(context.symbol(s)):
order_target_percent(context.symbol(s), equal_weight)
today_buy_count += 1
else:
if context.can_duplication_buy == True: # 可以重复买入,多一份买入
for s in target_stock_to_buy:
if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量
break
if data.can_trade(context.symbol(s)):
if context.symbol(s) in position_current_weight:
curr_value = position_current_value.get(context.symbol(s))
order_value(context.symbol(s), min(context.max_stock_weight * portfolio_value - curr_value, equal_weight*portfolio_value))
else:
order_value(context.symbol(s), equal_weight*portfolio_value)
today_buy_count += 1
elif context.can_duplication_buy == False: # 不可以重复买入,不买
for s in target_stock_to_buy:
if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量
break
if s in stock_hold_now:
continue
else:
if data.can_trade(context.symbol(s)):
order_target_percent(context.symbol(s), equal_weight)
today_buy_count += 1
#--------------------------------------------------------------------
# 风控体系
#--------------------------------------------------------------------
def market_risk_manage(context, data):
"""大盘风控"""
date = data.current_dt.strftime('%Y-%m-%d')
if type(context.index_signal_data) == pd.DataFrame:
current_signal = context.index_signal_data.loc[date]['signal']
if current_signal == 'short':
stock_hold_now = [equity.symbol for equity in context.portfolio.positions]
# 平掉所有股票
for stock in stock_hold_now:
if data.can_trade(context.symbol(stock)):
context.order_target_percent(context.symbol(stock), 0)
print('大盘出现止损信号, 平掉全部仓位,并关闭交易!')
context.market_risk_signal = 'short'
else:
context.market_risk_signal = 'long'
def strategy_risk_manage(context, data):
"""策略风控"""
if context.strategy_risk_conf == []: # 没有设置策略风控
context.strategy_risk_signal = 'long'
else:
for rm in context.strategy_risk_conf:
if rm['method'] == 'strategy_percent_stopwin':
pct = rm['params']['percent']
portfolio_value = context.portfolio.portfolio_value
if portfolio_value / context.capital_base - 1 > pct:
stock_hold_now = [equity.symbol for equity in context.portfolio.positions]
# 平掉所有股票
for stock in stock_hold_now:
if data.can_trade(context.symbol(stock)):
context.order_target_percent(context.symbol(stock), 0)
print('策略出现止盈信号, 平掉全部仓位,并关闭交易!')
context.strategy_risk_signal = 'short'
if rm['method'] == 'strategy_percent_stoploss':
pct = rm['params']['percent']
portfolio_value = context.portfolio.portfolio_value
if portfolio_value / context.capital_base -1 < pct:
stock_hold_now = [equity.symbol for equity in context.portfolio.positions]
# 平掉所有股票
for stock in stock_hold_now:
if data.can_trade(context.symbol(stock)):
context.order_target_percent(context.symbol(stock), 0)
print('策略出现止损信号, 平掉全部仓位,并关闭交易!')
context.strategy_risk_signal = 'short'
def stock_risk_manage(context, data):
"""个股风控"""
position_current_pnl = {pos.sid: (pos.last_sale_price-pos.cost_basis)/pos.cost_basis for i,pos in context.portfolio.positions.items()}
for rm in context.stock_risk_conf:
params_pct = rm['params']['percent']
if rm['method'] == 'stock_percent_stopwin':
for sid,pnl_pct in position_current_pnl.items():
if pnl_pct > params_pct:
context.stock_hit_stop.append(sid.symbol)
if rm['method'] == 'stock_percent_stoploss':
for sid,pnl_pct in position_current_pnl.items():
if pnl_pct < params_pct:
context.stock_hit_stop.append(sid.symbol)
# 回测引擎:每日数据处理函数,每天执行一次
def m4_handle_data_bigquant_run(context, data):
"""每日运行策略逻辑"""
market_risk_manage(context, data)
strategy_risk_manage(context, data)
if context.market_risk_signal == 'short': return
if context.strategy_risk_signal == 'short': return
stock_risk_manage(context, data)
if context.trading_day_index % context.rebalance_periods == 0:
sell_action(context, data)
buy_action(context, data)
# 回测引擎:准备数据,只执行一次
def m4_prepare_bigquant_run(context):
load_data = context.options['data'].read_pickle()
context.signal_daily_stock = load_data['df1'].groupby('date').apply(lambda x:list(x.instrument))
context.enter_daily_df = load_data['df2'].groupby('date').apply(lambda x:list(x.instrument))
context.exit_daily_df = load_data['df3'].groupby('date').apply(lambda x:list(x.instrument))
# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
def m4_before_trading_start_bigquant_run(context, data):
"""每日盘前更新股票池"""
frequency = context.rebalance_periods if context.trade_mode == '轮动' else context.stock_select_frequency
if context.trading_day_index % frequency == 0:
date = data.current_dt.strftime('%Y-%m-%d')
try:
context.selected_stock = context.signal_daily_stock[date]
except KeyError as e:
context.selected_stock = []
"""初始化风控参数"""
context.strategy_risk_signal = 'long'
context.market_risk_signal = 'long'
context.stock_hit_stop = []
context.cannot_buy_stock = []
m1 = M.instruments.v2(
start_date='2022-01-01',
end_date='2022-05-27',
market='CN_STOCK_A',
instrument_list=''
)
m8 = M.cached.v3(
input_1=m1.data,
run=m8_run_bigquant_run,
post_run=m8_post_run_bigquant_run,
input_ports='input_1',
params='{\'input_index\':\'000300.HIX\'}',
output_ports='data_1'
)
m3 = M.input_features.v1(
features="""
in_csi300_0
in_csi500_0
in_sse50_0
industry_sw_level1_0
st_status_0
close_0
ta_sma_5_0
ta_sma_10_0
ta_sma_60_0
# 选股条件
cond1=((ta_sma_5_0 - ta_sma_10_0) / ta_sma_10_0 < 0.02) & ((ta_sma_5_0 - ta_sma_10_0) / ta_sma_10_0 > 0)
# 排序选股
cond2=pe_ttm_0
# 进场条件
cond3=(close_0 > close_1)
# 卖出条件
cond4=close_0 < ta_sma_10_0
"""
)
m15 = M.general_feature_extractor.v7(
instruments=m1.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=300
)
m16 = M.derived_feature_extractor.v3(
input_data=m15.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m10 = M.input_features.v1(
features="""concept
"""
)
m5 = M.use_datasource.v1(
instruments=m1.data,
features=m10.data,
datasource_id='industry_CN_STOCK_A',
start_date='',
end_date=''
)
m7 = M.join.v3(
data1=m5.data,
data2=m16.data,
on='date,instrument',
how='inner',
sort=False
)
m6 = M.input_features.v1(
features='suspended'
)
m19 = M.use_datasource.v1(
instruments=m1.data,
features=m6.data,
datasource_id='stock_status_CN_STOCK_A',
start_date='',
end_date=''
)
m20 = M.join.v3(
data1=m7.data,
data2=m19.data,
on='date,instrument',
how='inner',
sort=False
)
m2 = M.stockpool_select.v6(
input_1=m20.data,
self_instruments=[],
input_concepts=[],
input_industrys=[360000,710000,220000,460000,370000,330000,340000,720000,240000,630000,280000,420000,510000,640000,610000,620000,650000,230000,410000,350000,490000,110000,210000,730000,450000,270000,430000,480000],
input_indexs=['全A股'],
input_st='过滤',
input_suspend='过滤'
)
m22 = M.cached.v3(
input_1=m2.data,
run=m22_run_bigquant_run,
post_run=m22_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m17 = M.cached.v3(
input_1=m22.data_1,
input_2=m22.data_2,
input_3=m22.data_3,
run=m17_run_bigquant_run,
post_run=m17_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m4 = M.trade.v4(
instruments=m1.data,
options_data=m17.data_1,
benchmark_ds=m8.data_1,
start_date='',
end_date='',
initialize=m4_initialize_bigquant_run,
handle_data=m4_handle_data_bigquant_run,
prepare=m4_prepare_bigquant_run,
before_trading_start=m4_before_trading_start_bigquant_run,
volume_limit=0.025,
order_price_field_buy='open',
order_price_field_sell='open',
capital_base=1000000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='后复权',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.HIX'
)
[2022-05-28 15:25:35.779691] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-05-28 15:25:35.966208] INFO: moduleinvoker: instruments.v2 运行完成[0.186528s].
[2022-05-28 15:25:35.980835] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-28 15:25:36.081028] INFO: moduleinvoker: cached.v3 运行完成[0.100193s].
[2022-05-28 15:25:36.090051] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-28 15:25:36.117478] INFO: moduleinvoker: input_features.v1 运行完成[0.027434s].
[2022-05-28 15:25:36.130492] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-05-28 15:27:14.354668] INFO: 基础特征抽取: 年份 2021, 特征行数=894954
[2022-05-28 15:27:24.453113] INFO: 基础特征抽取: 年份 2022, 特征行数=444781
[2022-05-28 15:27:24.561186] INFO: 基础特征抽取: 总行数: 1339735
[2022-05-28 15:27:24.566785] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[108.436293s].
[2022-05-28 15:27:24.601084] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-05-28 15:27:26.986969] INFO: derived_feature_extractor: 提取完成 cond1=((ta_sma_5_0 - ta_sma_10_0) / ta_sma_10_0 < 0.02) & ((ta_sma_5_0 - ta_sma_10_0) / ta_sma_10_0 > 0), 0.005s
[2022-05-28 15:27:26.990256] INFO: derived_feature_extractor: 提取完成 cond2=pe_ttm_0, 0.002s
[2022-05-28 15:27:26.993431] INFO: derived_feature_extractor: 提取完成 cond3=(close_0 > close_1), 0.002s
[2022-05-28 15:27:26.996305] INFO: derived_feature_extractor: 提取完成 cond4=close_0 < ta_sma_10_0, 0.002s
[2022-05-28 15:27:28.565572] INFO: derived_feature_extractor: /y_2021, 894954
[2022-05-28 15:27:29.710909] INFO: derived_feature_extractor: /y_2022, 444781
[2022-05-28 15:27:30.014873] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[5.413762s].
[2022-05-28 15:27:30.019410] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-28 15:27:30.036182] INFO: moduleinvoker: 命中缓存
[2022-05-28 15:27:30.038148] INFO: moduleinvoker: input_features.v1 运行完成[0.018729s].
[2022-05-28 15:27:30.048116] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-05-28 15:27:34.138145] INFO: moduleinvoker: use_datasource.v1 运行完成[4.090021s].
[2022-05-28 15:27:34.173786] INFO: moduleinvoker: join.v3 开始运行..
[2022-05-28 15:27:39.512422] INFO: join: /y_2021, 行数=0/894954, 耗时=3.649759s
[2022-05-28 15:27:42.366913] INFO: join: /y_2022, 行数=444781/444781, 耗时=2.848548s
[2022-05-28 15:27:42.451005] INFO: join: 最终行数: 444781
[2022-05-28 15:27:42.490356] INFO: moduleinvoker: join.v3 运行完成[8.316568s].
[2022-05-28 15:27:42.545767] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-05-28 15:27:42.557252] INFO: moduleinvoker: 命中缓存
[2022-05-28 15:27:42.558869] INFO: moduleinvoker: input_features.v1 运行完成[0.013119s].
[2022-05-28 15:27:42.564089] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-05-28 15:27:43.154949] INFO: moduleinvoker: use_datasource.v1 运行完成[0.59085s].
[2022-05-28 15:27:43.165526] INFO: moduleinvoker: join.v3 开始运行..
[2022-05-28 15:27:44.008772] INFO: join: /y_2021, 行数=0/0, 耗时=0.146823s
[2022-05-28 15:27:46.436268] INFO: join: /y_2022, 行数=444781/444781, 耗时=2.425788s
[2022-05-28 15:27:46.537862] INFO: join: 最终行数: 444781
[2022-05-28 15:27:46.547710] INFO: moduleinvoker: join.v3 运行完成[3.382184s].
[2022-05-28 15:27:46.582541] INFO: moduleinvoker: stockpool_select.v6 开始运行..
[2022-05-28 15:28:38.012634] INFO: moduleinvoker: stockpool_select.v6 运行完成[51.430085s].
[2022-05-28 15:28:38.029613] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-28 15:28:39.334182] INFO: moduleinvoker: cached.v3 运行完成[1.30455s].
[2022-05-28 15:28:39.347376] INFO: moduleinvoker: cached.v3 开始运行..
[2022-05-28 15:28:40.114120] INFO: moduleinvoker: cached.v3 运行完成[0.766749s].
[2022-05-28 15:28:41.923928] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-05-28 15:28:41.929454] INFO: backtest: biglearning backtest:V8.6.2
[2022-05-28 15:28:42.329200] INFO: backtest: product_type:stock by specified
[2022-05-28 15:28:42.428837] INFO: moduleinvoker: cached.v2 开始运行..
[2022-05-28 15:28:46.394336] INFO: backtest: 读取股票行情完成:1612852
[2022-05-28 15:28:47.609886] INFO: moduleinvoker: cached.v2 运行完成[5.181046s].
[2022-05-28 15:28:49.044474] INFO: algo: TradingAlgorithm V1.8.7
[2022-05-28 15:28:49.367049] INFO: algo: trading transform...
[2022-05-28 15:28:50.267964] ERROR: moduleinvoker: module name: backtest, module version: v8, trackeback: KeyError: Equity(3263 [002248.SZA])
[2022-05-28 15:28:50.273692] ERROR: moduleinvoker: module name: trade, module version: v4, trackeback: KeyError: Equity(3263 [002248.SZA])