{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-231:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-549:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-563:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-250:options_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-231:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-250:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-238:input_data","SourceOutputPortId":"-231:data"},{"DestinationInputPortId":"-567:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"-549:model"},{"DestinationInputPortId":"-549:training_ds","SourceOutputPortId":"-563:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-567:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-05","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2015-02-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-231","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-231"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-231"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-231","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-250","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n start_date = context.ranker_prediction[\"date\"].min()\n end_date = context.ranker_prediction[\"date\"].max()\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n \n # handle_data 函数是每根bar都会执行,最好不要执行 DataSource 的读取\n context.industry_df = DataSource(\"industry_CN_STOCK_A\").read(start_date=start_date, end_date=end_date, fields=[\"industry_sw_level1\"])\n \n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n # 按日期过滤得到今日的预测数据\n today = data.current_dt.strftime('%Y-%m-%d')\n ranker_prediction = context.ranker_prediction[context.ranker_prediction.date == today]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n positions_df = pd.DataFrame({\"instrument\": positions.keys(), \"percent\": np.round(list(positions.values()) / context.portfolio.portfolio_value, 2)})\n industry_df = context.industry_df[context.industry_df[\"date\"] == today]\n positions_df = positions_df.merge(industry_df, on=[\"instrument\"], how=\"left\")\n positions_df = positions_df.groupby(\"industry_sw_level1\", as_index=False, group_keys=False).sum()\n print(f\"{today}的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>\")\n # 此处可能存在行业占比 21% 的情况,是由于账户总价值(资金+持仓市值)的变化\n print(positions_df)\n industries = list(positions_df[\"industry_sw_level1\"])\n \n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n # 判断如果买入股票,板块仓位是否超过 20%\n industry = list(industry_df[industry_df[\"instrument\"] == instrument][\"industry_sw_level1\"])[0]\n if industry in industries:\n old_percent = positions_df[positions_df[\"industry_sw_level1\"] == industry][\"percent\"].values[0]\n if old_percent >= 0.2:\n print(f\"{today}购买{instrument},板块{industry}已有20%仓位,取消订单\")\n continue\n new_percent = old_percent + round(cash / context.portfolio.portfolio_value, 2)\n if new_percent > 0.2:\n print(f\"{today}购买{instrument}超出板块{industry}持仓20%,调整买入金额\")\n cash = context.portfolio.portfolio_value * (0.2 - old_percent)\n context.order_value(context.symbol(instrument), cash)\n if len(positions_df) > 0:\n positions_df.loc[positions_df[\"industry_sw_level1\"] == industry, \"percent\"] += round(cash / context.portfolio.portfolio_value, 2)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-250"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-250","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-549","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-549"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-549"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-549"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-549"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-549","OutputType":null},{"Name":"feature_gains","NodeId":"-549","OutputType":null},{"Name":"m_lazy_run","NodeId":"-549","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-563","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-563"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-563"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-563","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-567","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-567"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-567"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-567","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='763,19,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><NodePosition Node='-215' Position='381,188,200,200'/><NodePosition Node='-222' Position='385,280,200,200'/><NodePosition Node='-231' Position='1078,236,200,200'/><NodePosition Node='-238' Position='1081,327,200,200'/><NodePosition Node='-250' Position='1040,752,200,200'/><NodePosition Node='-549' Position='638,561,200,200'/><NodePosition Node='-563' Position='376,467,200,200'/><NodePosition Node='-567' Position='1078,418,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2021-06-24 08:58:31.908853] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-06-24 08:58:31.916401] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:31.918488] INFO: moduleinvoker: instruments.v2 运行完成[0.009655s].
[2021-06-24 08:58:31.921310] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-06-24 08:58:31.926879] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:31.929458] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.008125s].
[2021-06-24 08:58:31.933391] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-06-24 08:58:31.939701] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:31.942225] INFO: moduleinvoker: input_features.v1 运行完成[0.008852s].
[2021-06-24 08:58:31.961295] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-06-24 08:58:31.968366] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:31.971317] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.010061s].
[2021-06-24 08:58:31.975614] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-06-24 08:58:31.981570] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:31.984298] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.008678s].
[2021-06-24 08:58:31.988826] INFO: moduleinvoker: join.v3 开始运行..
[2021-06-24 08:58:32.001466] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:32.004070] INFO: moduleinvoker: join.v3 运行完成[0.015233s].
[2021-06-24 08:58:32.007443] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-06-24 08:58:32.013506] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:32.015088] INFO: moduleinvoker: dropnan.v2 运行完成[0.007646s].
[2021-06-24 08:58:32.017847] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2021-06-24 08:58:32.024522] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:32.607212] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.589337s].
[2021-06-24 08:58:32.611548] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-06-24 08:58:32.617719] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:32.619243] INFO: moduleinvoker: instruments.v2 运行完成[0.007709s].
[2021-06-24 08:58:32.625477] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-06-24 08:58:32.630992] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:32.633279] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007795s].
[2021-06-24 08:58:32.638828] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-06-24 08:58:32.645865] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:32.648646] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.009813s].
[2021-06-24 08:58:32.652895] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-06-24 08:58:32.660564] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:32.662593] INFO: moduleinvoker: dropnan.v2 运行完成[0.009648s].
[2021-06-24 08:58:32.668476] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2021-06-24 08:58:32.677495] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:32.680392] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.011871s].
[2021-06-24 08:58:32.714764] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-06-24 08:58:32.760980] INFO: backtest: biglearning backtest:V8.5.0
[2021-06-24 08:58:32.763296] INFO: backtest: product_type:stock by specified
[2021-06-24 08:58:33.105216] INFO: moduleinvoker: cached.v2 开始运行..
[2021-06-24 08:58:33.116444] INFO: moduleinvoker: 命中缓存
[2021-06-24 08:58:33.118423] INFO: moduleinvoker: cached.v2 运行完成[0.013239s].
[2021-06-24 08:58:34.351177] INFO: algo: TradingAlgorithm V1.8.3
[2021-06-24 08:58:35.376012] INFO: algo: trading transform...
[2021-06-24 08:58:36.949825] INFO: Performance: Simulated 20 trading days out of 20.
[2021-06-24 08:58:36.952678] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2021-06-24 08:58:36.955020] INFO: Performance: last close: 2015-01-30 15:00:00+00:00
[2021-06-24 08:58:39.205783] INFO: moduleinvoker: backtest.v8 运行完成[6.490988s].
[2021-06-24 08:58:39.208082] INFO: moduleinvoker: trade.v4 运行完成[6.523969s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-508d2817571d4f4e972ba31f83f91dc1"}/bigcharts-data-end
2015-01-05的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
Empty DataFrame
Columns: [industry_sw_level1, percent]
Index: []
2015-01-06的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 220000 0.03
1 640000 0.07
2 710000 0.06
3 730000 0.04
2015-01-07的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 220000 0.06
1 370000 0.04
2 640000 0.07
3 710000 0.18
4 730000 0.04
2015-01-07购买300380.SZA超出板块710000持仓20%,调整买入金额
2015-01-07购买300367.SZA超出板块710000持仓20%,调整买入金额
2015-01-08的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 220000 0.09
1 270000 0.03
2 370000 0.10
3 640000 0.07
4 710000 0.20
5 730000 0.04
2015-01-08购买300209.SZA超出板块710000持仓20%,调整买入金额
2015-01-08购买603019.SHA超出板块710000持仓20%,调整买入金额
2015-01-09的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 220000 0.09
1 270000 0.09
2 370000 0.11
3 460000 0.03
4 630000 0.03
5 640000 0.07
6 710000 0.21
7 730000 0.04
2015-01-12的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 220000 0.12
1 270000 0.12
2 350000 0.02
3 370000 0.11
4 430000 0.06
5 460000 0.03
6 630000 0.07
7 640000 0.06
8 710000 0.22
9 730000 0.05
2015-01-13的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 220000 0.14
1 270000 0.13
2 350000 0.02
3 370000 0.11
4 430000 0.09
5 460000 0.03
6 630000 0.11
7 640000 0.08
8 710000 0.03
9 730000 0.05
2015-01-14的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 220000 0.08
1 240000 0.07
2 270000 0.13
3 350000 0.02
4 430000 0.12
5 460000 0.08
6 610000 0.03
7 630000 0.11
8 640000 0.09
9 650000 0.04
2015-01-15的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 220000 0.03
1 240000 0.20
2 270000 0.12
3 350000 0.02
4 420000 0.07
5 430000 0.07
6 610000 0.03
7 630000 0.11
8 640000 0.06
9 650000 0.04
2015-01-15购买000693.SZA,板块240000已有20%仓位,取消订单
2015-01-16的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 240000 0.13
1 270000 0.03
2 370000 0.04
3 420000 0.07
4 430000 0.08
5 630000 0.11
6 640000 0.06
7 650000 0.04
8 710000 0.04
2015-01-16购买600490.SHA超出板块240000持仓20%,调整买入金额
2015-01-16购买000693.SZA,板块240000已有20%仓位,取消订单
2015-01-19的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 220000 0.05
1 240000 0.20
2 270000 0.07
3 370000 0.05
4 420000 0.07
5 430000 0.12
6 630000 0.09
7 710000 0.04
2015-01-19购买000693.SZA,板块240000已有20%仓位,取消订单
2015-01-19购买002057.SZA,板块240000已有20%仓位,取消订单
2015-01-20的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 220000 0.05
1 230000 0.04
2 240000 0.20
3 270000 0.07
4 420000 0.03
5 430000 0.12
6 490000 0.14
2015-01-20购买000783.SZA超出板块490000持仓20%,调整买入金额
2015-01-20购买000693.SZA,板块240000已有20%仓位,取消订单
2015-01-20购买600490.SHA,板块240000已有20%仓位,取消订单
2015-01-21的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 240000 0.20
1 270000 0.03
2 430000 0.16
3 490000 0.21
4 640000 0.05
2015-01-21购买000809.SZA超出板块430000持仓20%,调整买入金额
2015-01-21购买600338.SHA,板块240000已有20%仓位,取消订单
2015-01-22的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 110000 0.04
1 240000 0.21
2 270000 0.08
3 340000 0.06
4 430000 0.20
5 640000 0.05
2015-01-23的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 110000 0.04
1 240000 0.05
2 270000 0.08
3 340000 0.06
4 360000 0.10
5 370000 0.04
6 410000 0.04
7 430000 0.20
8 450000 0.05
9 640000 0.11
2015-01-23购买002208.SZA,板块430000已有20%仓位,取消订单
2015-01-23购买000736.SZA,板块430000已有20%仓位,取消订单
2015-01-23购买600565.SHA,板块430000已有20%仓位,取消订单
2015-01-26的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 110000 0.04
1 270000 0.08
2 340000 0.06
3 360000 0.15
4 370000 0.04
5 410000 0.04
6 430000 0.04
7 450000 0.08
8 640000 0.07
2015-01-26购买002240.SZA超出板块360000持仓20%,调整买入金额
2015-01-27的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 110000 0.10
1 270000 0.08
2 330000 0.04
3 340000 0.06
4 360000 0.21
5 370000 0.04
6 410000 0.04
7 430000 0.04
8 450000 0.03
9 460000 0.04
10 640000 0.05
2015-01-27购买002240.SZA,板块360000已有20%仓位,取消订单
2015-01-28的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 110000 0.10
1 270000 0.03
2 330000 0.10
3 340000 0.06
4 360000 0.05
5 370000 0.08
6 410000 0.07
7 430000 0.04
8 450000 0.03
9 460000 0.04
10 640000 0.05
11 730000 0.05
2015-01-29的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 110000 0.10
1 330000 0.04
2 360000 0.20
3 370000 0.12
4 410000 0.03
5 450000 0.03
6 460000 0.04
7 630000 0.06
8 640000 0.09
9 730000 0.05
2015-01-30的行业持仓:>>>>>>>>>>>>>>>>>>>>>>>>
industry_sw_level1 percent
0 110000 0.12
1 330000 0.05
2 360000 0.15
3 370000 0.16
4 410000 0.03
5 450000 0.03
6 460000 0.04
7 510000 0.03
8 630000 0.04
9 640000 0.09
10 730000 0.05
- 收益率19.72%
- 年化收益率865.66%
- 基准收益率-2.81%
- 阿尔法9.37
- 贝塔0.25
- 夏普比率10.39
- 胜率0.88
- 盈亏比4.07
- 收益波动率21.86%
- 信息比率0.47
- 最大回撤2.1%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-acfc5838280b42808b94fae357e46da8"}/bigcharts-data-end