复制链接
克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-647:features_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-464:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-209:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-172:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-9185:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-8668:input_1","from_node_id":"-238:data"},{"to_node_id":"-215:features","from_node_id":"-647:data"},{"to_node_id":"-222:features","from_node_id":"-647:data"},{"to_node_id":"-231:features","from_node_id":"-647:data"},{"to_node_id":"-238:features","from_node_id":"-647:data"},{"to_node_id":"-592:input_data","from_node_id":"-464:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"-592:data"},{"to_node_id":"-8672:input_data","from_node_id":"-8668:data_1"},{"to_node_id":"-86:input_data","from_node_id":"-8672:data"},{"to_node_id":"-9185:options_data","from_node_id":"-216:sorted_data"},{"to_node_id":"-216:input_ds","from_node_id":"-209:data"},{"to_node_id":"-209:data2","from_node_id":"-172:data_1"},{"to_node_id":"-172:input_2","from_node_id":"-170:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"-191:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2008-10-20","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-03-15","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# 计算收益:2日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用30个分类\nall_wbins(label, 30)","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"std(turn_0,10)\navg_turn_5\nrank_swing_volatility_60_0\nfe1=sum(max(0,high_0-delay((high_0+low_0+close_0)/3,1)),26)/sum(max(0,delay((high_0+low_0+close_0)/3,1)-1),26)*100\nmean(turn_0*(return_0-1),30)\nstd(return_0-1,60)\nstd(return_0-1,15)\nfe2=((close_0-sum(min(low_0,delay(close_0,1)),6))/sum(max(high_0,delay(close_0,1))-min(low_0,delay(close_0,1)),6)*12*24+(close_0-sum(min(low_0,delay(close_0,1)),12))/sum(max(high_0,delay(close_0,1))-min(low_0,delay(close_0,1)),12)*6*24+(close_0-sum(min(low_0,delay(close_0,1)),24))/sum(max(high_0,delay(close_0,1))-min(low_0,delay(close_0,1)),24)*6*24)*100/(6*12+6*24+12*24)\n#---- 全选小市值的股票?","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"40","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"250","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"80","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-15","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-10-20","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"120","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"120","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-647","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"cond28=sum(price_limit_status_0==3,30)>1","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-647"}],"output_ports":[{"name":"data","node_id":"-647"}],"cacheable":true,"seq_num":4,"comment":"这里放置要过滤的条件","comment_collapsed":true},{"node_id":"-464","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-464"}],"output_ports":[{"name":"data_1","node_id":"-464"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-592","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"cond28","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-592"}],"output_ports":[{"name":"data","node_id":"-592"},{"name":"left_data","node_id":"-592"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-8668","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-8668"}],"output_ports":[{"name":"data_1","node_id":"-8668"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-8672","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"cond28","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-8672"}],"output_ports":[{"name":"data","node_id":"-8672"},{"name":"left_data","node_id":"-8672"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-9185","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [1]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 1\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 获取当前持仓\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n \n today = data.current_dt.strftime('%Y-%m-%d')\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == today]\n try:\n #大盘风控模块,读取风控数据 \n benckmark_risk=ranker_prediction['bm_0'].values[0]\n if benckmark_risk > 0:\n for instrument in positions.keys():\n context.order_target(context.symbol(instrument), 0)\n print(today,'大盘风控止损触发,全仓卖出')\n return\n except:\n print('--!')\n \n #当risk为1时,市场有风险,全部平仓,不再执行其它操作 \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n \n #------------------------获取 持仓信息 环节--------------------------\n # 先定义 我们要用来买卖股票的资金\n cash_for_buy = context.portfolio.cash\n #获取 我们模型今天预测的股票池\n buy_instruments = list(ranker_prediction.instrument)\n #找到我们当前的股票持仓\n current_hold_stock = [equity.symbol for equity in context.portfolio.positions ]\n #定义 一个 列表 用来储存我们今天要卖出的股票\n sell_instruments = [instrument.symbol for instrument in context.portfolio.positions.keys()]\n \n \n\n #----逻辑上 先卖 后买,防止资金不足---产生空单\n # 今天需要卖出的股票 存在于我们 当前的股票持仓中 \n totay_to_sell = [i for i in sell_instruments[:1] ]#这里 因为我们只有1只股票 所以可以直接卖掉 \n \n #使用一个for循环 将持仓的股票全部卖出\n for instrument in totay_to_sell:\n context.order_target(context.symbol(instrument), 0)\n # 今天需要买入的股票 存在于我们 模型当天预测的股票池 buy_instruments 中 \n \n \n totay_to_buy = [i for i in buy_instruments[:1] ]#这里 我们只买 排名最靠前的第一名 \n # 如果想买入多只股票怎么操作呢?------\n #totay_to_sell = [i for i in sell_instruments[:N] ] N=你想要买入的股票数量,比如我想买2只 我就把N改成2\n #使用一个for循环 将预测的股票前 N名 买入\n #为了方便统计,我们直接用所有的钱下单,all in 当天买入的股票\n for instrument in totay_to_buy:\n\n context.order_value(context.symbol(instrument),cash_for_buy)\n \n \n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"def bigquant_run(context):\n\n\n # 获取st状态和涨跌停状态\n \n context.status_df = D.features(instruments =context.instruments,start_date = context.start_date, end_date = context.end_date, \n fields=['st_status_0','price_limit_status_0','price_limit_status_1'])\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"def bigquant_run(context, data):\n pass \n# # 获取涨跌停状态数据\n# df_price_limit_status=context.status_df.set_index('date')\n# today=data.current_dt.strftime('%Y-%m-%d')\n# # 得到当前未完成订单\n# for orders in get_open_orders().values():\n# # 循环,撤销订单\n# for _order in orders:\n# ins=str(_order.sid.symbol)\n# try:\n# #判断一下如果当日涨停,则取消卖单\n# if df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.loc[today]>2 and _order.amount<0:\n# cancel_order(_order)\n# print(today,'尾盘涨停取消卖单',ins) \n# except:\n# continue\n \n \n ","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-9185"},{"name":"options_data","node_id":"-9185"},{"name":"history_ds","node_id":"-9185"},{"name":"benchmark_ds","node_id":"-9185"},{"name":"trading_calendar","node_id":"-9185"}],"output_ports":[{"name":"raw_perf","node_id":"-9185"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-216","module_id":"BigQuantSpace.sort.sort-v4","parameters":[{"name":"sort_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"--","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-216"},{"name":"sort_by_ds","node_id":"-216"}],"output_ports":[{"name":"sorted_data","node_id":"-216"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-209","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date","type":"Literal","bound_global_parameter":null},{"name":"how","value":"left","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-209"},{"name":"data2","node_id":"-209"}],"output_ports":[{"name":"data","node_id":"-209"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-172","module_id":"BigQuantSpace.index_feature_extract.index_feature_extract-v3","parameters":[{"name":"before_days","value":"100","type":"Literal","bound_global_parameter":null},{"name":"index","value":"000044.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-172"},{"name":"input_2","node_id":"-172"}],"output_ports":[{"name":"data_1","node_id":"-172"},{"name":"data_2","node_id":"-172"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-170","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nbm_0=where(ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4)<0,1,0)\n#bm_0=where((ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4))/shift(ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4),1)<0,1,0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-170"}],"output_ports":[{"name":"data","node_id":"-170"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-191","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"std(turn_0,10)\navg_turn_5\nrank_swing_volatility_60_0\nfe1\nmean(turn_0*(return_0-1),30)\nstd(return_0-1,60)\nstd(return_0-1,15)\nfe2","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-191"}],"output_ports":[{"name":"data","node_id":"-191"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='201.42050170898438,4.905195236206055,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='16.515289306640625,278.5504608154297,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='799,-108,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='507,841,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='116.77523803710938,468.4556579589844,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='923.8731689453125,923.6773681640625,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1527,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='135.0321044921875,739.133056640625,200,200'/><node_position Node='-86' Position='1331,556,200,200'/><node_position Node='-215' Position='320.5794982910156,179.51683044433594,200,200'/><node_position Node='-222' Position='324.5137634277344,287.12994384765625,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-647' Position='789,-7,200,200'/><node_position Node='-464' Position='111.16207885742188,553.8103942871094,200,200'/><node_position Node='-592' Position='125.9036865234375,648.4235534667969,200,200'/><node_position Node='-8668' Position='1345,420,200,200'/><node_position Node='-8672' Position='1347,482,200,200'/><node_position Node='-9185' Position='846.4510498046875,1334.446533203125,200,200'/><node_position Node='-216' Position='1192.585693359375,1243.29052734375,200,200'/><node_position Node='-209' Position='1201.0030517578125,1144.2261962890625,200,200'/><node_position Node='-172' Position='1192.6788330078125,1027.3883666992188,200,200'/><node_position Node='-170' Position='1232.573486328125,919.9739990234375,200,200'/><node_position Node='-191' Position='636.3532104492188,550.2890014648438,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [ ]:
    # 本代码由可视化策略环境自动生成 2022年10月28日 11:43
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m20_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 1
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = [1]
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 1
        context.options['hold_days'] = 1
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m20_handle_data_bigquant_run(context, data):
        # 获取当前持仓
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.portfolio.positions.items()}
        
        today = data.current_dt.strftime('%Y-%m-%d')
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == today]
        try:
        #大盘风控模块,读取风控数据    
            benckmark_risk=ranker_prediction['bm_0'].values[0]
            if benckmark_risk > 0:
                for instrument in positions.keys():
                    context.order_target(context.symbol(instrument), 0)
                    print(today,'大盘风控止损触发,全仓卖出')
                    return
        except:
            print('--!')
            
        #当risk为1时,市场有风险,全部平仓,不再执行其它操作    
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
        
        #------------------------获取 持仓信息 环节--------------------------
        # 先定义 我们要用来买卖股票的资金
        cash_for_buy = context.portfolio.cash
        #获取 我们模型今天预测的股票池
        buy_instruments = list(ranker_prediction.instrument)
        #找到我们当前的股票持仓
        current_hold_stock = [equity.symbol for equity in context.portfolio.positions ]
        #定义 一个 列表 用来储存我们今天要卖出的股票
        sell_instruments = [instrument.symbol for instrument in context.portfolio.positions.keys()]
        
        
    
        #----逻辑上 先卖 后买,防止资金不足---产生空单
        # 今天需要卖出的股票  存在于我们  当前的股票持仓中  
        totay_to_sell = [i for i in sell_instruments[:1] ]#这里 因为我们只有1只股票 所以可以直接卖掉 
        
        #使用一个for循环  将持仓的股票全部卖出
        for instrument in totay_to_sell:
            context.order_target(context.symbol(instrument), 0)
        # 今天需要买入的股票  存在于我们  模型当天预测的股票池 buy_instruments 中  
       
        
        totay_to_buy = [i for i in buy_instruments[:1] ]#这里 我们只买 排名最靠前的第一名   
        # 如果想买入多只股票怎么操作呢?------
        #totay_to_sell = [i for i in sell_instruments[:N] ] N=你想要买入的股票数量,比如我想买2只 我就把N改成2
        #使用一个for循环  将预测的股票前  N名  买入
        #为了方便统计,我们直接用所有的钱下单,all in 当天买入的股票
        for instrument in totay_to_buy:
    
            context.order_value(context.symbol(instrument),cash_for_buy)
        
        
    
    def m20_prepare_bigquant_run(context):
    
    
         # 获取st状态和涨跌停状态
        
        context.status_df = D.features(instruments =context.instruments,start_date = context.start_date, end_date = context.end_date, 
                               fields=['st_status_0','price_limit_status_0','price_limit_status_1'])
    
    def m20_before_trading_start_bigquant_run(context, data):
        pass     
    #     # 获取涨跌停状态数据
    #     df_price_limit_status=context.status_df.set_index('date')
    #     today=data.current_dt.strftime('%Y-%m-%d')
    #     # 得到当前未完成订单
    #     for orders in get_open_orders().values():
    #         # 循环,撤销订单
    #         for _order in orders:
    #             ins=str(_order.sid.symbol)
    #             try:
    #                 #判断一下如果当日涨停,则取消卖单
    #                 if  df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.loc[today]>2 and _order.amount<0:
    #                     cancel_order(_order)
    #                     print(today,'尾盘涨停取消卖单',ins) 
    #             except:
    #                 continue
      
        
        
    
    m1 = M.instruments.v2(
        start_date='2008-10-20',
        end_date='2021-03-15',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# 计算收益:2日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -2) / shift(open, -1)-1
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用30个分类
    all_wbins(label, 30)""",
        start_date='',
        end_date='',
        benchmark='000300.HIX',
        drop_na_label=True,
        cast_label_int=True
    )
    
    m3 = M.input_features.v1(
        features="""std(turn_0,10)
    avg_turn_5
    rank_swing_volatility_60_0
    fe1=sum(max(0,high_0-delay((high_0+low_0+close_0)/3,1)),26)/sum(max(0,delay((high_0+low_0+close_0)/3,1)-1),26)*100
    mean(turn_0*(return_0-1),30)
    std(return_0-1,60)
    std(return_0-1,15)
    fe2=((close_0-sum(min(low_0,delay(close_0,1)),6))/sum(max(high_0,delay(close_0,1))-min(low_0,delay(close_0,1)),6)*12*24+(close_0-sum(min(low_0,delay(close_0,1)),12))/sum(max(high_0,delay(close_0,1))-min(low_0,delay(close_0,1)),12)*6*24+(close_0-sum(min(low_0,delay(close_0,1)),24))/sum(max(high_0,delay(close_0,1))-min(low_0,delay(close_0,1)),24)*6*24)*100/(6*12+6*24+12*24)
    #----   全选小市值的股票?"""
    )
    
    m4 = M.input_features.v1(
        features_ds=m3.data,
        features='cond28=sum(price_limit_status_0==3,30)>1'
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m4.data,
        start_date='',
        end_date='',
        before_start_days=120
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m4.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m7 = M.join.v3(
        data1=m2.data,
        data2=m16.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m5 = M.filtet_st_stock.v7(
        input_1=m7.data
    )
    
    m10 = M.filter.v3(
        input_data=m5.data_1,
        expr='cond28',
        output_left_data=True
    )
    
    m13 = M.dropnan.v1(
        input_data=m10.data
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2021-01-15'),
        end_date=T.live_run_param('trading_date', '2022-10-20'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m4.data,
        start_date='',
        end_date='',
        before_start_days=120
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m4.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m11 = M.filtet_st_stock.v7(
        input_1=m18.data
    )
    
    m12 = M.filter.v3(
        input_data=m11.data_1,
        expr='cond28',
        output_left_data=True
    )
    
    m14 = M.dropnan.v1(
        input_data=m12.data
    )
    
    m24 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    bm_0=where(ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4)<0,1,0)
    #bm_0=where((ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4))/shift(ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4),1)<0,1,0)"""
    )
    
    m23 = M.index_feature_extract.v3(
        input_1=m9.data,
        input_2=m24.data,
        before_days=100,
        index='000044.HIX'
    )
    
    m27 = M.input_features.v1(
        features="""std(turn_0,10)
    avg_turn_5
    rank_swing_volatility_60_0
    fe1
    mean(turn_0*(return_0-1),30)
    std(return_0-1,60)
    std(return_0-1,15)
    fe2"""
    )
    
    m6 = M.stock_ranker_train.v5(
        training_ds=m13.data,
        features=m27.data,
        learning_algorithm='排序',
        number_of_leaves=40,
        minimum_docs_per_leaf=250,
        number_of_trees=80,
        learning_rate=0.1,
        max_bins=1023,
        feature_fraction=1,
        m_lazy_run=False
    )
    
    m8 = M.stock_ranker_predict.v5(
        model=m6.model,
        data=m14.data,
        m_lazy_run=False
    )
    
    m22 = M.join.v3(
        data1=m8.predictions,
        data2=m23.data_1,
        on='date',
        how='left',
        sort=False
    )
    
    m21 = M.sort.v4(
        input_ds=m22.data,
        sort_by='date',
        group_by='--',
        keep_columns='--',
        ascending=True
    )
    
    m20 = M.trade.v4(
        instruments=m9.data,
        options_data=m21.sorted_data,
        start_date='',
        end_date='',
        initialize=m20_initialize_bigquant_run,
        handle_data=m20_handle_data_bigquant_run,
        prepare=m20_prepare_bigquant_run,
        before_trading_start=m20_before_trading_start_bigquant_run,
        volume_limit=0,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=100000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.SHA'
    )
    
    设置测试数据集,查看训练迭代过程的NDCG
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-aa0a6f1dc20242b3a9e0cb4bbd689843"}/bigcharts-data-end