{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-276:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-266:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-298:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-293:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-266:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-298:input_1","from_node_id":"-129:data"},{"to_node_id":"-168:inputs","from_node_id":"-160:data"},{"to_node_id":"-682:inputs","from_node_id":"-160:data"},{"to_node_id":"-224:inputs","from_node_id":"-168:data"},{"to_node_id":"-231:inputs","from_node_id":"-196:data"},{"to_node_id":"-196:inputs","from_node_id":"-224:data"},{"to_node_id":"-238:inputs","from_node_id":"-231:data"},{"to_node_id":"-682:outputs","from_node_id":"-238:data"},{"to_node_id":"-1098:input_model","from_node_id":"-682:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-1098:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-436:input_1","from_node_id":"-243:data"},{"to_node_id":"-1540:input_data","from_node_id":"-251:data"},{"to_node_id":"-1098:training_data","from_node_id":"-436:data_1"},{"to_node_id":"-1098:validation_data","from_node_id":"-436:data_2"},{"to_node_id":"-288:input_data","from_node_id":"-266:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-288:data"},{"to_node_id":"-251:input_data","from_node_id":"-293:data"},{"to_node_id":"-293:input_data","from_node_id":"-298:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-276:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2017-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0\nopen_0\nhigh_0\nlow_0 \namount_0\nturn_0 \nreturn_0\n \nclose_1\nopen_1\nhigh_1\nlow_1\nreturn_1\namount_1\nturn_1\n \nclose_2\nopen_2\nhigh_2\nlow_2\namount_2\nturn_2\nreturn_2\n \nclose_3\nopen_3\nhigh_3\nlow_3\namount_3\nturn_3\nreturn_3\n \nclose_4\nopen_4\nhigh_4\nlow_4\namount_4\nturn_4\nreturn_4\n \nmean(close_0, 5)\nmean(low_0, 5)\nmean(open_0, 5)\nmean(high_0, 5)\nmean(turn_0, 5)\nmean(amount_0, 5)\nmean(return_0, 5)\n \nts_max(close_0, 5)\nts_max(low_0, 5)\nts_max(open_0, 5)\nts_max(high_0, 5)\nts_max(turn_0, 5)\nts_max(amount_0, 5)\nts_max(return_0, 5)\n \nts_min(close_0, 5)\nts_min(low_0, 5)\nts_min(open_0, 5)\nts_min(high_0, 5)\nts_min(turn_0, 5)\nts_min(amount_0, 5)\nts_min(return_0, 5) \n \nstd(close_0, 5)\nstd(low_0, 5)\nstd(open_0, 5)\nstd(high_0, 5)\nstd(turn_0, 5)\nstd(amount_0, 5)\nstd(return_0, 5)\n \nts_rank(close_0, 5)\nts_rank(low_0, 5)\nts_rank(open_0, 5)\nts_rank(high_0, 5)\nts_rank(turn_0, 5)\nts_rank(amount_0, 5)\nts_rank(return_0, 5)\n \ndecay_linear(close_0, 5)\ndecay_linear(low_0, 5)\ndecay_linear(open_0, 5)\ndecay_linear(high_0, 5)\ndecay_linear(turn_0, 5)\ndecay_linear(amount_0, 5)\ndecay_linear(return_0, 5)\n \ncorrelation(volume_0, return_0, 5)\ncorrelation(volume_0, high_0, 5)\ncorrelation(volume_0, low_0, 5)\ncorrelation(volume_0, close_0, 5)\ncorrelation(volume_0, open_0, 5)\ncorrelation(volume_0, turn_0, 5)\n \ncorrelation(return_0, high_0, 5)\ncorrelation(return_0, low_0, 5)\ncorrelation(return_0, close_0, 5)\ncorrelation(return_0, open_0, 5)\ncorrelation(return_0, turn_0, 5)\n \ncorrelation(high_0, low_0, 5)\ncorrelation(high_0, close_0, 5)\ncorrelation(high_0, open_0, 5)\ncorrelation(high_0, turn_0, 5)\n \ncorrelation(low_0, close_0, 5)\ncorrelation(low_0, open_0, 5)\ncorrelation(low_0, turn_0, 5)\n \ncorrelation(close_0, open_0, 5)\ncorrelation(close_0, turn_0, 5)\n\ncorrelation(open_0, turn_0, 5)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 20\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"98","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-168","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"256","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-168"}],"output_ports":[{"name":"data","node_id":"-168"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"128","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-224","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-224"}],"output_ports":[{"name":"data","node_id":"-224"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":false,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-682","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-682"},{"name":"outputs","node_id":"-682"}],"output_ports":[{"name":"data","node_id":"-682"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1098","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"30","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"from tensorflow.keras.callbacks import EarlyStopping\nbigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.0001, patience=5)","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"0","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-1098"},{"name":"training_data","node_id":"-1098"},{"name":"validation_data","node_id":"-1098"}],"output_ports":[{"name":"data","node_id":"-1098"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-436","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_1.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'])\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-436"},{"name":"input_2","node_id":"-436"},{"name":"input_3","node_id":"-436"}],"output_ports":[{"name":"data_1","node_id":"-436"},{"name":"data_2","node_id":"-436"},{"name":"data_3","node_id":"-436"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-266","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-266"},{"name":"input_2","node_id":"-266"}],"output_ports":[{"name":"data","node_id":"-266"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-293"},{"name":"features","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-298","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-298"},{"name":"input_2","node_id":"-298"}],"output_ports":[{"name":"data","node_id":"-298"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-276","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-276"},{"name":"input_2","node_id":"-276"}],"output_ports":[{"name":"data","node_id":"-276"}],"cacheable":true,"seq_num":29,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='261,29,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='113,177,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='657,-170,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='291,505,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1149,125,200,200'/><node_position Node='-106' Position='400,166,200,200'/><node_position Node='-113' Position='444,238,200,200'/><node_position Node='-122' Position='1146,284,200,200'/><node_position Node='-129' Position='1156,392,200,200'/><node_position Node='-141' Position='601,1134,200,200'/><node_position Node='-160' Position='-202,35,200,200'/><node_position Node='-168' Position='-198,146,200,200'/><node_position Node='-196' Position='-203,311,200,200'/><node_position Node='-224' Position='-203,240,200,200'/><node_position Node='-231' Position='-201,395,200,200'/><node_position Node='-238' Position='-195,470,200,200'/><node_position Node='-682' Position='-194,560,200,200'/><node_position Node='-1098' Position='49,772,200,200'/><node_position Node='-1540' Position='214,896,200,200'/><node_position Node='-2431' Position='432,986,200,200'/><node_position Node='-243' Position='308,578,200,200'/><node_position Node='-251' Position='1147,690,200,200'/><node_position Node='-436' Position='281,664,200,200'/><node_position Node='-266' Position='467,322,200,200'/><node_position Node='-288' Position='479,426,200,200'/><node_position Node='-293' Position='1150,600,200,200'/><node_position Node='-298' Position='1130,499,200,200'/><node_position Node='-276' Position='102,255,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-07-29 21:57:08.996169] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-07-29 21:57:09.017039] INFO: moduleinvoker: 命中缓存
[2022-07-29 21:57:09.019231] INFO: moduleinvoker: instruments.v2 运行完成[0.023078s].
[2022-07-29 21:57:09.038052] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-07-29 21:57:09.046600] INFO: moduleinvoker: 命中缓存
[2022-07-29 21:57:09.447683] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.409623s].
[2022-07-29 21:57:09.462772] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-07-29 21:57:09.474961] INFO: moduleinvoker: 命中缓存
[2022-07-29 21:57:09.482624] INFO: moduleinvoker: standardlize.v8 运行完成[0.019853s].
[2022-07-29 21:57:09.495495] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-07-29 21:57:09.503773] INFO: moduleinvoker: 命中缓存
[2022-07-29 21:57:09.506576] INFO: moduleinvoker: input_features.v1 运行完成[0.011119s].
[2022-07-29 21:57:09.530860] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-07-29 21:57:09.539607] INFO: moduleinvoker: 命中缓存
[2022-07-29 21:57:09.542529] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.011692s].
[2022-07-29 21:57:09.580470] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-07-29 21:57:22.105816] INFO: derived_feature_extractor: 提取完成 mean(close_0, 5), 2.704s
[2022-07-29 21:57:24.816728] INFO: derived_feature_extractor: 提取完成 mean(low_0, 5), 2.709s
[2022-07-29 21:57:27.470125] INFO: derived_feature_extractor: 提取完成 mean(open_0, 5), 2.652s
[2022-07-29 21:57:30.166874] INFO: derived_feature_extractor: 提取完成 mean(high_0, 5), 2.695s
[2022-07-29 21:57:32.723961] INFO: derived_feature_extractor: 提取完成 mean(turn_0, 5), 2.555s
[2022-07-29 21:57:35.312150] INFO: derived_feature_extractor: 提取完成 mean(amount_0, 5), 2.586s
[2022-07-29 21:57:45.705919] INFO: derived_feature_extractor: 提取完成 mean(return_0, 5), 10.392s
[2022-07-29 21:57:48.358769] INFO: derived_feature_extractor: 提取完成 ts_max(close_0, 5), 2.650s
[2022-07-29 21:57:51.075456] INFO: derived_feature_extractor: 提取完成 ts_max(low_0, 5), 2.715s
[2022-07-29 21:57:53.669897] INFO: derived_feature_extractor: 提取完成 ts_max(open_0, 5), 2.592s
[2022-07-29 21:57:56.315826] INFO: derived_feature_extractor: 提取完成 ts_max(high_0, 5), 2.643s
[2022-07-29 21:57:58.936521] INFO: derived_feature_extractor: 提取完成 ts_max(turn_0, 5), 2.619s
[2022-07-29 21:58:01.703817] INFO: derived_feature_extractor: 提取完成 ts_max(amount_0, 5), 2.765s
[2022-07-29 21:58:04.334035] INFO: derived_feature_extractor: 提取完成 ts_max(return_0, 5), 2.628s
[2022-07-29 21:58:06.941468] INFO: derived_feature_extractor: 提取完成 ts_min(close_0, 5), 2.605s
[2022-07-29 21:58:09.627310] INFO: derived_feature_extractor: 提取完成 ts_min(low_0, 5), 2.684s
[2022-07-29 21:58:12.267487] INFO: derived_feature_extractor: 提取完成 ts_min(open_0, 5), 2.638s
[2022-07-29 21:58:14.975401] INFO: derived_feature_extractor: 提取完成 ts_min(high_0, 5), 2.706s
[2022-07-29 21:58:17.855256] INFO: derived_feature_extractor: 提取完成 ts_min(turn_0, 5), 2.878s
[2022-07-29 21:58:20.816928] INFO: derived_feature_extractor: 提取完成 ts_min(amount_0, 5), 2.960s
[2022-07-29 21:58:23.556021] INFO: derived_feature_extractor: 提取完成 ts_min(return_0, 5), 2.737s
[2022-07-29 21:58:26.234132] INFO: derived_feature_extractor: 提取完成 std(close_0, 5), 2.676s
[2022-07-29 21:58:28.871182] INFO: derived_feature_extractor: 提取完成 std(low_0, 5), 2.635s
[2022-07-29 21:58:31.585098] INFO: derived_feature_extractor: 提取完成 std(open_0, 5), 2.712s
[2022-07-29 21:58:34.212590] INFO: derived_feature_extractor: 提取完成 std(high_0, 5), 2.625s
[2022-07-29 21:58:37.053986] INFO: derived_feature_extractor: 提取完成 std(turn_0, 5), 2.839s
[2022-07-29 21:58:39.688781] INFO: derived_feature_extractor: 提取完成 std(amount_0, 5), 2.633s
[2022-07-29 21:58:42.323786] INFO: derived_feature_extractor: 提取完成 std(return_0, 5), 2.632s
[2022-07-29 21:58:53.826877] INFO: derived_feature_extractor: 提取完成 ts_rank(close_0, 5), 11.500s
[2022-07-29 21:59:05.041963] INFO: derived_feature_extractor: 提取完成 ts_rank(low_0, 5), 11.213s
[2022-07-29 21:59:16.417057] INFO: derived_feature_extractor: 提取完成 ts_rank(open_0, 5), 11.373s
[2022-07-29 21:59:28.479752] INFO: derived_feature_extractor: 提取完成 ts_rank(high_0, 5), 12.060s
[2022-07-29 21:59:44.334389] INFO: derived_feature_extractor: 提取完成 ts_rank(turn_0, 5), 15.851s
[2022-07-29 21:59:55.619413] INFO: derived_feature_extractor: 提取完成 ts_rank(amount_0, 5), 11.283s
[2022-07-29 22:00:07.156456] INFO: derived_feature_extractor: 提取完成 ts_rank(return_0, 5), 11.535s
[2022-07-29 22:00:14.670056] INFO: derived_feature_extractor: 提取完成 decay_linear(close_0, 5), 7.511s
[2022-07-29 22:00:21.911064] INFO: derived_feature_extractor: 提取完成 decay_linear(low_0, 5), 7.238s
[2022-07-29 22:00:29.874954] INFO: derived_feature_extractor: 提取完成 decay_linear(open_0, 5), 7.962s
[2022-07-29 22:00:38.109357] INFO: derived_feature_extractor: 提取完成 decay_linear(high_0, 5), 8.231s
[2022-07-29 22:00:45.526605] INFO: derived_feature_extractor: 提取完成 decay_linear(turn_0, 5), 7.415s
[2022-07-29 22:00:52.653122] INFO: derived_feature_extractor: 提取完成 decay_linear(amount_0, 5), 7.124s
[2022-07-29 22:00:59.976967] INFO: derived_feature_extractor: 提取完成 decay_linear(return_0, 5), 7.322s
[2022-07-29 22:01:32.349788] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, return_0, 5), 32.370s
[2022-07-29 22:02:05.240523] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, high_0, 5), 32.889s
[2022-07-29 22:02:40.288194] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, low_0, 5), 35.046s
[2022-07-29 22:03:12.590059] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, close_0, 5), 32.298s
[2022-07-29 22:03:46.191561] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, open_0, 5), 33.600s
[2022-07-29 22:04:21.747468] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, turn_0, 5), 35.554s
[2022-07-29 22:04:56.097903] INFO: derived_feature_extractor: 提取完成 correlation(return_0, high_0, 5), 34.349s
[2022-07-29 22:05:32.813181] INFO: derived_feature_extractor: 提取完成 correlation(return_0, low_0, 5), 36.713s
[2022-07-29 22:06:11.446374] INFO: derived_feature_extractor: 提取完成 correlation(return_0, close_0, 5), 38.631s
[2022-07-29 22:06:44.997348] INFO: derived_feature_extractor: 提取完成 correlation(return_0, open_0, 5), 33.549s
[2022-07-29 22:07:22.576109] INFO: derived_feature_extractor: 提取完成 correlation(return_0, turn_0, 5), 37.577s
[2022-07-29 22:07:56.929503] INFO: derived_feature_extractor: 提取完成 correlation(high_0, low_0, 5), 34.351s
[2022-07-29 22:08:31.476638] INFO: derived_feature_extractor: 提取完成 correlation(high_0, close_0, 5), 34.545s
[2022-07-29 22:09:05.991412] INFO: derived_feature_extractor: 提取完成 correlation(high_0, open_0, 5), 34.511s
[2022-07-29 22:09:41.300823] INFO: derived_feature_extractor: 提取完成 correlation(high_0, turn_0, 5), 35.306s
[2022-07-29 22:10:15.182715] INFO: derived_feature_extractor: 提取完成 correlation(low_0, close_0, 5), 33.880s
[2022-07-29 22:10:51.087149] INFO: derived_feature_extractor: 提取完成 correlation(low_0, open_0, 5), 35.903s
[2022-07-29 22:11:25.235492] INFO: derived_feature_extractor: 提取完成 correlation(low_0, turn_0, 5), 34.146s
[2022-07-29 22:11:59.509855] INFO: derived_feature_extractor: 提取完成 correlation(close_0, open_0, 5), 34.272s
[2022-07-29 22:12:32.530305] INFO: derived_feature_extractor: 提取完成 correlation(close_0, turn_0, 5), 33.017s
[2022-07-29 22:13:04.557240] INFO: derived_feature_extractor: 提取完成 correlation(open_0, turn_0, 5), 32.025s
[2022-07-29 22:13:09.941242] INFO: derived_feature_extractor: /y_2017, 743233
[2022-07-29 22:13:15.227820] INFO: derived_feature_extractor: /y_2018, 816987
[2022-07-29 22:13:21.191467] INFO: derived_feature_extractor: /y_2019, 884867
[2022-07-29 22:13:27.963971] INFO: derived_feature_extractor: /y_2020, 945961
[2022-07-29 22:13:32.677927] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[983.097477s].
[2022-07-29 22:13:32.686649] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-07-29 22:20:58.289524] INFO: moduleinvoker: standardlize.v8 运行完成[445.602858s].
[2022-07-29 22:20:58.309880] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-07-29 22:21:35.861036] INFO: moduleinvoker: fillnan.v1 运行完成[37.551144s].
[2022-07-29 22:21:35.890473] INFO: moduleinvoker: join.v3 开始运行..
[2022-07-29 22:22:33.220130] INFO: join: /data, 行数=3337834/3372572, 耗时=51.018159s
[2022-07-29 22:22:33.547386] INFO: join: 最终行数: 3337834
[2022-07-29 22:22:33.566421] INFO: moduleinvoker: join.v3 运行完成[57.675943s].
[2022-07-29 22:22:33.615739] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-07-29 22:23:01.148010] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[27.532299s].
[2022-07-29 22:23:01.164220] INFO: moduleinvoker: cached.v3 开始运行..
[2022-07-29 22:23:20.265048] INFO: moduleinvoker: cached.v3 运行完成[19.100828s].
[2022-07-29 22:23:20.280919] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-07-29 22:23:20.287811] INFO: moduleinvoker: 命中缓存
[2022-07-29 22:23:20.290092] INFO: moduleinvoker: instruments.v2 运行完成[0.009185s].
[2022-07-29 22:23:20.316587] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-07-29 22:23:20.326131] INFO: moduleinvoker: 命中缓存
[2022-07-29 22:23:20.327918] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.011361s].
[2022-07-29 22:23:20.335000] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-07-29 22:23:24.025915] INFO: derived_feature_extractor: 提取完成 mean(close_0, 5), 0.830s
[2022-07-29 22:23:24.807896] INFO: derived_feature_extractor: 提取完成 mean(low_0, 5), 0.780s
[2022-07-29 22:23:25.598449] INFO: derived_feature_extractor: 提取完成 mean(open_0, 5), 0.789s
[2022-07-29 22:23:26.318974] INFO: derived_feature_extractor: 提取完成 mean(high_0, 5), 0.719s
[2022-07-29 22:23:27.123243] INFO: derived_feature_extractor: 提取完成 mean(turn_0, 5), 0.803s
[2022-07-29 22:23:27.907157] INFO: derived_feature_extractor: 提取完成 mean(amount_0, 5), 0.782s
[2022-07-29 22:23:28.684162] INFO: derived_feature_extractor: 提取完成 mean(return_0, 5), 0.775s
[2022-07-29 22:23:29.472510] INFO: derived_feature_extractor: 提取完成 ts_max(close_0, 5), 0.786s
[2022-07-29 22:23:30.261954] INFO: derived_feature_extractor: 提取完成 ts_max(low_0, 5), 0.787s
[2022-07-29 22:23:31.111964] INFO: derived_feature_extractor: 提取完成 ts_max(open_0, 5), 0.848s
[2022-07-29 22:23:31.901377] INFO: derived_feature_extractor: 提取完成 ts_max(high_0, 5), 0.788s
[2022-07-29 22:23:32.705577] INFO: derived_feature_extractor: 提取完成 ts_max(turn_0, 5), 0.803s
[2022-07-29 22:23:33.536606] INFO: derived_feature_extractor: 提取完成 ts_max(amount_0, 5), 0.829s
[2022-07-29 22:23:34.367054] INFO: derived_feature_extractor: 提取完成 ts_max(return_0, 5), 0.829s
[2022-07-29 22:23:35.200098] INFO: derived_feature_extractor: 提取完成 ts_min(close_0, 5), 0.831s
[2022-07-29 22:23:36.048842] INFO: derived_feature_extractor: 提取完成 ts_min(low_0, 5), 0.847s
[2022-07-29 22:23:36.878945] INFO: derived_feature_extractor: 提取完成 ts_min(open_0, 5), 0.828s
[2022-07-29 22:23:37.745886] INFO: derived_feature_extractor: 提取完成 ts_min(high_0, 5), 0.865s
[2022-07-29 22:23:38.534064] INFO: derived_feature_extractor: 提取完成 ts_min(turn_0, 5), 0.786s
[2022-07-29 22:23:39.294943] INFO: derived_feature_extractor: 提取完成 ts_min(amount_0, 5), 0.759s
[2022-07-29 22:23:40.145068] INFO: derived_feature_extractor: 提取完成 ts_min(return_0, 5), 0.848s
[2022-07-29 22:23:40.989150] INFO: derived_feature_extractor: 提取完成 std(close_0, 5), 0.842s
[2022-07-29 22:23:41.849081] INFO: derived_feature_extractor: 提取完成 std(low_0, 5), 0.858s
[2022-07-29 22:23:42.726135] INFO: derived_feature_extractor: 提取完成 std(open_0, 5), 0.875s
[2022-07-29 22:23:43.575896] INFO: derived_feature_extractor: 提取完成 std(high_0, 5), 0.848s
[2022-07-29 22:23:44.414086] INFO: derived_feature_extractor: 提取完成 std(turn_0, 5), 0.836s
[2022-07-29 22:23:45.286837] INFO: derived_feature_extractor: 提取完成 std(amount_0, 5), 0.871s
[2022-07-29 22:23:46.111021] INFO: derived_feature_extractor: 提取完成 std(return_0, 5), 0.822s
[2022-07-29 22:23:49.622091] INFO: derived_feature_extractor: 提取完成 ts_rank(close_0, 5), 3.509s
[2022-07-29 22:23:53.198405] INFO: derived_feature_extractor: 提取完成 ts_rank(low_0, 5), 3.575s
[2022-07-29 22:23:56.940959] INFO: derived_feature_extractor: 提取完成 ts_rank(open_0, 5), 3.741s
[2022-07-29 22:24:00.510530] INFO: derived_feature_extractor: 提取完成 ts_rank(high_0, 5), 3.568s
[2022-07-29 22:24:04.027233] INFO: derived_feature_extractor: 提取完成 ts_rank(turn_0, 5), 3.514s
[2022-07-29 22:24:07.912109] INFO: derived_feature_extractor: 提取完成 ts_rank(amount_0, 5), 3.883s
[2022-07-29 22:24:11.809303] INFO: derived_feature_extractor: 提取完成 ts_rank(return_0, 5), 3.895s
[2022-07-29 22:24:14.166749] INFO: derived_feature_extractor: 提取完成 decay_linear(close_0, 5), 2.355s
[2022-07-29 22:24:16.666310] INFO: derived_feature_extractor: 提取完成 decay_linear(low_0, 5), 2.498s
[2022-07-29 22:24:19.203826] INFO: derived_feature_extractor: 提取完成 decay_linear(open_0, 5), 2.536s
[2022-07-29 22:24:21.543814] INFO: derived_feature_extractor: 提取完成 decay_linear(high_0, 5), 2.337s
[2022-07-29 22:24:23.735068] INFO: derived_feature_extractor: 提取完成 decay_linear(turn_0, 5), 2.190s
[2022-07-29 22:24:26.147498] INFO: derived_feature_extractor: 提取完成 decay_linear(amount_0, 5), 2.410s
[2022-07-29 22:24:28.436517] INFO: derived_feature_extractor: 提取完成 decay_linear(return_0, 5), 2.287s
[2022-07-29 22:25:02.495584] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, return_0, 5), 34.057s
[2022-07-29 22:25:37.209483] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, high_0, 5), 34.711s
[2022-07-29 22:26:11.800421] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, low_0, 5), 34.589s
[2022-07-29 22:26:45.990192] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, close_0, 5), 34.188s
[2022-07-29 22:27:18.814383] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, open_0, 5), 32.822s
[2022-07-29 22:27:53.018520] INFO: derived_feature_extractor: 提取完成 correlation(volume_0, turn_0, 5), 34.202s
[2022-07-29 22:28:27.315194] INFO: derived_feature_extractor: 提取完成 correlation(return_0, high_0, 5), 34.295s
[2022-07-29 22:29:02.412877] INFO: derived_feature_extractor: 提取完成 correlation(return_0, low_0, 5), 35.096s
[2022-07-29 22:29:36.627544] INFO: derived_feature_extractor: 提取完成 correlation(return_0, close_0, 5), 34.213s
[2022-07-29 22:30:12.007971] INFO: derived_feature_extractor: 提取完成 correlation(return_0, open_0, 5), 35.379s
[2022-07-29 22:30:50.340552] INFO: derived_feature_extractor: 提取完成 correlation(return_0, turn_0, 5), 38.331s
[2022-07-29 22:31:27.330765] INFO: derived_feature_extractor: 提取完成 correlation(high_0, low_0, 5), 36.988s
[2022-07-29 22:32:05.245459] INFO: derived_feature_extractor: 提取完成 correlation(high_0, close_0, 5), 37.913s
[2022-07-29 22:32:42.928336] INFO: derived_feature_extractor: 提取完成 correlation(high_0, open_0, 5), 37.681s
[2022-07-29 22:33:20.773585] INFO: derived_feature_extractor: 提取完成 correlation(high_0, turn_0, 5), 37.844s
[2022-07-29 22:33:58.256189] INFO: derived_feature_extractor: 提取完成 correlation(low_0, close_0, 5), 37.479s
[2022-07-29 22:34:34.845086] INFO: derived_feature_extractor: 提取完成 correlation(low_0, open_0, 5), 36.586s
[2022-07-29 22:35:10.539116] INFO: derived_feature_extractor: 提取完成 correlation(low_0, turn_0, 5), 35.692s
[2022-07-29 22:35:45.178300] INFO: derived_feature_extractor: 提取完成 correlation(close_0, open_0, 5), 34.637s
[2022-07-29 22:36:20.522046] INFO: derived_feature_extractor: 提取完成 correlation(close_0, turn_0, 5), 35.342s
[2022-07-29 22:36:55.641546] INFO: derived_feature_extractor: 提取完成 correlation(open_0, turn_0, 5), 35.117s
[2022-07-29 22:37:00.221813] INFO: derived_feature_extractor: /y_2021, 1061527
[2022-07-29 22:37:06.250323] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[825.915309s].
[2022-07-29 22:37:06.257928] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-07-29 22:39:12.704081] INFO: moduleinvoker: standardlize.v8 运行完成[126.446149s].
[2022-07-29 22:39:12.758455] INFO: moduleinvoker: fillnan.v1 开始运行..
[2022-07-29 22:39:32.137343] INFO: moduleinvoker: fillnan.v1 运行完成[19.378898s].
[2022-07-29 22:39:32.163509] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-07-29 22:39:40.223816] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[8.060318s].
[2022-07-29 22:39:40.257001] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.020747s].
[2022-07-29 22:39:40.330918] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.051933s].
[2022-07-29 22:39:40.346411] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.005138s].
[2022-07-29 22:39:40.366609] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.012412s].
[2022-07-29 22:39:40.393371] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.007368s].
[2022-07-29 22:39:40.414358] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.013073s].
[2022-07-29 22:39:40.456358] INFO: moduleinvoker: cached.v3 开始运行..
[2022-07-29 22:39:40.466239] INFO: moduleinvoker: 命中缓存
[2022-07-29 22:39:40.468465] INFO: moduleinvoker: cached.v3 运行完成[0.012094s].
[2022-07-29 22:39:40.473637] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.048681s].
[2022-07-29 22:39:40.497843] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2022-07-29 22:39:48.235813] INFO: dl_model_train: 准备训练,训练样本个数:2503375,迭代次数:30
[2022-07-29 22:48:27.886995] INFO: dl_model_train: 训练结束,耗时:519.65s
[2022-07-29 22:48:27.939786] INFO: moduleinvoker: dl_model_train.v1 运行完成[527.441956s].
[2022-07-29 22:48:27.949234] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2022-07-29 22:48:32.649754] INFO: moduleinvoker: dl_model_predict.v1 运行完成[4.700522s].
[2022-07-29 22:48:32.662892] INFO: moduleinvoker: cached.v3 开始运行..
[2022-07-29 22:48:39.465273] INFO: moduleinvoker: cached.v3 运行完成[6.802384s].
[2022-07-29 22:48:44.127009] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-07-29 22:48:44.132315] INFO: backtest: biglearning backtest:V8.6.2
[2022-07-29 22:48:44.133661] INFO: backtest: product_type:stock by specified
[2022-07-29 22:48:44.284782] INFO: moduleinvoker: cached.v2 开始运行..
[2022-07-29 22:48:44.295580] INFO: moduleinvoker: 命中缓存
[2022-07-29 22:48:44.298346] INFO: moduleinvoker: cached.v2 运行完成[0.013602s].
[2022-07-29 22:48:46.867055] INFO: algo: TradingAlgorithm V1.8.8
[2022-07-29 22:48:47.775413] INFO: algo: trading transform...
[2022-07-29 22:48:55.752595] WARNING: Performance: maybe_close_position no price for asset:Equity(4487 [002071.SZA]), field:price, dt:2021-05-07 15:00:00+00:00
[2022-07-29 22:49:10.992491] INFO: Performance: Simulated 243 trading days out of 243.
[2022-07-29 22:49:10.994119] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2022-07-29 22:49:10.995574] INFO: Performance: last close: 2021-12-31 15:00:00+00:00
[2022-07-29 22:49:17.871782] INFO: moduleinvoker: backtest.v8 运行完成[33.744783s].
[2022-07-29 22:49:17.874409] INFO: moduleinvoker: trade.v4 运行完成[38.388928s].
Epoch 1/30
2445/2445 - 26s - loss: 0.9911 - mse: 0.9911 - val_loss: 0.9901 - val_mse: 0.9901
Epoch 2/30
2445/2445 - 19s - loss: 0.9874 - mse: 0.9874 - val_loss: 0.9900 - val_mse: 0.9900
Epoch 3/30
2445/2445 - 20s - loss: 0.9864 - mse: 0.9864 - val_loss: 0.9888 - val_mse: 0.9888
Epoch 4/30
2445/2445 - 19s - loss: 0.9856 - mse: 0.9856 - val_loss: 0.9887 - val_mse: 0.9887
Epoch 5/30
2445/2445 - 19s - loss: 0.9847 - mse: 0.9847 - val_loss: 0.9882 - val_mse: 0.9882
Epoch 6/30
2445/2445 - 19s - loss: 0.9841 - mse: 0.9841 - val_loss: 0.9872 - val_mse: 0.9872
Epoch 7/30
2445/2445 - 19s - loss: 0.9833 - mse: 0.9833 - val_loss: 0.9870 - val_mse: 0.9870
Epoch 8/30
2445/2445 - 19s - loss: 0.9826 - mse: 0.9826 - val_loss: 0.9866 - val_mse: 0.9866
Epoch 9/30
2445/2445 - 19s - loss: 0.9821 - mse: 0.9821 - val_loss: 0.9861 - val_mse: 0.9861
Epoch 10/30
2445/2445 - 20s - loss: 0.9816 - mse: 0.9816 - val_loss: 0.9861 - val_mse: 0.9861
Epoch 11/30
2445/2445 - 20s - loss: 0.9813 - mse: 0.9813 - val_loss: 0.9858 - val_mse: 0.9858
Epoch 12/30
2445/2445 - 20s - loss: 0.9806 - mse: 0.9806 - val_loss: 0.9858 - val_mse: 0.9858
Epoch 13/30
2445/2445 - 20s - loss: 0.9801 - mse: 0.9801 - val_loss: 0.9856 - val_mse: 0.9856
Epoch 14/30
2445/2445 - 20s - loss: 0.9797 - mse: 0.9797 - val_loss: 0.9857 - val_mse: 0.9857
Epoch 15/30
2445/2445 - 19s - loss: 0.9792 - mse: 0.9792 - val_loss: 0.9856 - val_mse: 0.9856
Epoch 16/30
2445/2445 - 20s - loss: 0.9788 - mse: 0.9788 - val_loss: 0.9853 - val_mse: 0.9853
Epoch 17/30
2445/2445 - 20s - loss: 0.9784 - mse: 0.9784 - val_loss: 0.9855 - val_mse: 0.9855
Epoch 18/30
2445/2445 - 19s - loss: 0.9779 - mse: 0.9779 - val_loss: 0.9855 - val_mse: 0.9855
Epoch 19/30
2445/2445 - 19s - loss: 0.9775 - mse: 0.9775 - val_loss: 0.9846 - val_mse: 0.9846
Epoch 20/30
2445/2445 - 19s - loss: 0.9770 - mse: 0.9770 - val_loss: 0.9845 - val_mse: 0.9845
Epoch 21/30
2445/2445 - 19s - loss: 0.9768 - mse: 0.9768 - val_loss: 0.9842 - val_mse: 0.9842
Epoch 22/30
2445/2445 - 19s - loss: 0.9762 - mse: 0.9762 - val_loss: 0.9842 - val_mse: 0.9842
Epoch 23/30
2445/2445 - 19s - loss: 0.9758 - mse: 0.9758 - val_loss: 0.9849 - val_mse: 0.9849
Epoch 24/30
2445/2445 - 19s - loss: 0.9755 - mse: 0.9755 - val_loss: 0.9843 - val_mse: 0.9843
Epoch 25/30
2445/2445 - 20s - loss: 0.9752 - mse: 0.9752 - val_loss: 0.9850 - val_mse: 0.9850
Epoch 26/30
2445/2445 - 20s - loss: 0.9747 - mse: 0.9747 - val_loss: 0.9851 - val_mse: 0.9851
1018/1018 - 2s
DataSource(490883351d8143b087e8bf947f8fb685T)
- 收益率53.83%
- 年化收益率56.3%
- 基准收益率-5.2%
- 阿尔法0.61
- 贝塔0.45
- 夏普比率1.88
- 胜率0.5
- 盈亏比1.41
- 收益波动率23.74%
- 信息比率0.13
- 最大回撤11.45%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9a21feea479f4484ac697e5bfa481e0b"}/bigcharts-data-end