{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-690:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-967:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-1277:input_1","from_node_id":"-129:data"},{"to_node_id":"-460:raw_perf","from_node_id":"-141:raw_perf"},{"to_node_id":"-690:training_ds","from_node_id":"-47836:data"},{"to_node_id":"-690:predict_ds","from_node_id":"-47840:data"},{"to_node_id":"-47836:input_data","from_node_id":"-967:data_1"},{"to_node_id":"-47840:input_data","from_node_id":"-1277:data_1"},{"to_node_id":"-141:options_data","from_node_id":"-690:predictions"},{"to_node_id":"-122:instruments","from_node_id":"-144:data"},{"to_node_id":"-141:instruments","from_node_id":"-144:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-1-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"status = shift(stock_status_CN_STOCK_A__price_limit_status, -1)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"30","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 2\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [1 / stock_count for i in range(0, stock_count)]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 1\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n tmp = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n instruments = equities\n# # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n# if instrument in tmp:\n# print(\"涨停,不卖出\",instrument)\n# continue\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n \n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0.25","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"vwap_11","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-47836","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-47836"},{"name":"features","node_id":"-47836"}],"output_ports":[{"name":"data","node_id":"-47836"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-47840","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-47840"},{"name":"features","node_id":"-47840"}],"output_ports":[{"name":"data","node_id":"-47840"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-967","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n ins = m1.data.read_pickle()['instruments']\n start = m1.data.read_pickle()['start_date']\n end = m1.data.read_pickle()['end_date']\n \n df1 = D.features(ins,start,end,fields=['rank_turn_0','rank_amount_0','st_status_0'])\n df_final = pd.merge(df,df1,on=['date','instrument'])\n df_final = df_final[df_final['instrument'].str.startswith(\"688\") == False]\n df_final = df_final[df_final['instrument'].str.startswith(\"3\") == False]\n\n df_final = df_final[df_final[\"st_status_0\"] == 0]\n df_final = df_final[df_final['rank_turn_0'] >= 0.9]\n df_final = df_final[df_final['rank_amount_0'] >= 0.85]\n print(\"用于训练的样本总个数为\",len(df_final))\n print(df_final.iloc[0])\n data_1 = DataSource.write_df(df_final)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-967"},{"name":"input_2","node_id":"-967"},{"name":"input_3","node_id":"-967"}],"output_ports":[{"name":"data_1","node_id":"-967"},{"name":"data_2","node_id":"-967"},{"name":"data_3","node_id":"-967"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-1277","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n ins = m9.data.read_pickle()['instruments']\n start = m9.data.read_pickle()['start_date']\n end = m9.data.read_pickle()['end_date']\n \n df1 = D.features(ins,start,end,fields=['rank_turn_0','rank_amount_0','st_status_0'])\n df_final = pd.merge(df,df1,on=['date','instrument'])\n df_final = df_final[df_final['instrument'].str.startswith(\"688\") == False]\n df_final = df_final[df_final['instrument'].str.startswith(\"3\") == False]\n\n df_final = df_final[df_final[\"st_status_0\"] == 0]\n df_final = df_final[df_final['rank_turn_0'] >= 0.9]\n df_final = df_final[df_final['rank_amount_0'] >= 0.85]\n print(\"用于回测的样本总个数为\",len(df_final))\n data_1 = DataSource.write_df(df_final)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-1277"},{"name":"input_2","node_id":"-1277"},{"name":"input_3","node_id":"-1277"}],"output_ports":[{"name":"data_1","node_id":"-1277"},{"name":"data_2","node_id":"-1277"},{"name":"data_3","node_id":"-1277"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-690","module_id":"BigQuantSpace.lightgbm.lightgbm-v2","parameters":[{"name":"num_boost_round","value":"79","type":"Literal","bound_global_parameter":null},{"name":"objective","value":"排序(ndcg)","type":"Literal","bound_global_parameter":null},{"name":"num_class","value":"1","type":"Literal","bound_global_parameter":null},{"name":"num_leaves","value":"60","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"min_data_in_leaf","value":"900","type":"Literal","bound_global_parameter":null},{"name":"max_bin","value":"1023","type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"group_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"random_seed","value":"101","type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{'n_jobs':4,'label_gain':','.join([str(x) for x in range(20)]),\"max_position\":29,\"eval_at\":\"1,3,5,10\"}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-690"},{"name":"features","node_id":"-690"},{"name":"model","node_id":"-690"},{"name":"predict_ds","node_id":"-690"}],"output_ports":[{"name":"output_model","node_id":"-690"},{"name":"predictions","node_id":"-690"},{"name":"feature_gains","node_id":"-690"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-460","module_id":"BigQuantSpace.strategy_evaluate_risk_overview.strategy_evaluate_risk_overview-v1","parameters":[],"input_ports":[{"name":"raw_perf","node_id":"-460"}],"output_ports":[{"name":"data","node_id":"-460"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-144","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-22","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-144"}],"output_ports":[{"name":"data","node_id":"-144"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='215,66,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='706,-22,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='-106' Position='381,188,200,200'/><node_position Node='-113' Position='385,280,200,200'/><node_position Node='-122' Position='958,185,200,200'/><node_position Node='-129' Position='1081,327,200,200'/><node_position Node='-141' Position='1028,883,200,200'/><node_position Node='-47836' Position='344,643,200,200'/><node_position Node='-47840' Position='1084,615,200,200'/><node_position Node='-967' Position='224,520,200,200'/><node_position Node='-1277' Position='1348,735,200,200'/><node_position Node='-690' Position='521,818,200,200'/><node_position Node='-460' Position='920,1026,200,200'/><node_position Node='-144' Position='962,84,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-12-22 12:52:29.663659] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-22 12:52:29.669673] INFO: moduleinvoker: 命中缓存
[2021-12-22 12:52:29.671039] INFO: moduleinvoker: instruments.v2 运行完成[0.007386s].
[2021-12-22 12:52:29.677855] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-12-22 12:52:29.683866] INFO: moduleinvoker: 命中缓存
[2021-12-22 12:52:29.685098] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.007241s].
[2021-12-22 12:52:29.688599] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-22 12:52:29.694893] INFO: moduleinvoker: 命中缓存
[2021-12-22 12:52:29.696084] INFO: moduleinvoker: input_features.v1 运行完成[0.007486s].
[2021-12-22 12:52:29.711106] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-22 12:52:29.716653] INFO: moduleinvoker: 命中缓存
[2021-12-22 12:52:29.717881] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.006778s].
[2021-12-22 12:52:29.723669] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-22 12:52:29.729301] INFO: moduleinvoker: 命中缓存
[2021-12-22 12:52:29.730489] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.00682s].
[2021-12-22 12:52:29.737485] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-22 12:52:29.744553] INFO: moduleinvoker: 命中缓存
[2021-12-22 12:52:29.745802] INFO: moduleinvoker: join.v3 运行完成[0.008316s].
[2021-12-22 12:52:29.756086] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-22 12:52:29.761795] INFO: moduleinvoker: 命中缓存
[2021-12-22 12:52:29.763067] INFO: moduleinvoker: cached.v3 运行完成[0.006982s].
[2021-12-22 12:52:29.770412] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-12-22 12:52:29.776961] INFO: moduleinvoker: 命中缓存
[2021-12-22 12:52:29.778176] INFO: moduleinvoker: dropnan.v2 运行完成[0.007764s].
[2021-12-22 12:52:29.782444] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-22 12:52:29.839976] INFO: moduleinvoker: instruments.v2 运行完成[0.057519s].
[2021-12-22 12:52:29.850582] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-22 12:52:30.050426] INFO: 基础特征抽取: 年份 2018, 特征行数=71261
[2021-12-22 12:52:30.787800] INFO: 基础特征抽取: 年份 2019, 特征行数=890398
[2021-12-22 12:52:31.507288] INFO: 基础特征抽取: 年份 2020, 特征行数=951963
[2021-12-22 12:52:32.440062] INFO: 基础特征抽取: 年份 2021, 特征行数=1027907
[2021-12-22 12:52:32.517696] INFO: 基础特征抽取: 总行数: 2941529
[2021-12-22 12:52:32.525231] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[2.674648s].
[2021-12-22 12:52:32.532086] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-22 12:52:37.157872] INFO: derived_feature_extractor: 提取完成 status = shift(stock_status_CN_STOCK_A__price_limit_status, -1), 0.405s
[2021-12-22 12:52:37.352223] INFO: derived_feature_extractor: /y_2018, 71261
[2021-12-22 12:52:38.600459] INFO: derived_feature_extractor: /y_2019, 890398
[2021-12-22 12:52:40.078180] INFO: derived_feature_extractor: /y_2020, 951963
[2021-12-22 12:52:41.571827] INFO: derived_feature_extractor: /y_2021, 1027907
[2021-12-22 12:52:41.752886] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[9.220787s].
[2021-12-22 12:52:41.763660] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-22 12:53:10.803793] INFO: moduleinvoker: cached.v3 运行完成[29.040131s].
[2021-12-22 12:53:10.841413] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-12-22 12:53:10.959067] INFO: dropnan: /data, 75018/75130
[2021-12-22 12:53:10.990950] INFO: dropnan: 行数: 75018/75130
[2021-12-22 12:53:10.996272] INFO: moduleinvoker: dropnan.v2 运行完成[0.154863s].
[2021-12-22 12:53:11.005926] INFO: moduleinvoker: lightgbm.v2 开始运行..
[2021-12-22 12:53:11.153552] ERROR: LightGBM: 部分特征没有在数据中,执行失败
[2021-12-22 12:53:11.155669] ERROR: moduleinvoker: module name: cached, module version: v2, trackeback: KeyError: "None of [Index(['status = shift(stock_status_CN_STOCK_A__price_limit_status, -1)'], dtype='object')] are in the [columns]"
[2021-12-22 12:53:11.165320] ERROR: moduleinvoker: module name: lightgbm, module version: v2, trackeback: KeyError: "None of [Index(['status = shift(stock_status_CN_STOCK_A__price_limit_status, -1)'], dtype='object')] are in the [columns]"
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-2-d9fce71b71aa> in <module>
233 )
234
--> 235 m10 = M.lightgbm.v2(
236 training_ds=m4.data,
237 features=m3.data,
KeyError: "None of [Index(['status = shift(stock_status_CN_STOCK_A__price_limit_status, -1)'], dtype='object')] are in the [columns]"